sustainable material solutions for solar energy technologies

Download Sustainable Material Solutions For Solar Energy Technologies ebooks in PDF, epub, tuebl, textbook from Skinvaders.Com. Read online Sustainable Material Solutions For Solar Energy Technologies books on any device easily. We cannot guarantee that Sustainable Material Solutions For Solar Energy Technologies book is available. Click download or Read Online button to get book, you can choose FREE Trial service. READ as many books as you like (Personal use).

Sustainable Material Solutions for Solar Energy Technologies
Author : Mariana Amorim Fraga,Delaina Amos,Savas Sonmezoglu,Velumani Subramaniam
Publisher : Elsevier
Release Date : 2021-06-01
ISBN 10 : 0128215933
Pages : 544 pages
GET BOOK!

Due to an ever-increasing demand for clean energy, a sharp increase in the development of technologies that utilize solar energy has occurred. Currently, there are several important methods for harnessing solar energy in various stages of technological development, these include: photovoltaics, photocatalysis, photo-electrochemistry, solar thermal, and photochemistry. A related and parallel consideration is sustainable aspects of materials usage including efficiency and environmental friendliness of processing and production methods. In order to effectively utilize solar energy systems, an in-depth understanding of the technology as well as its suitability according to the requirements and nature of usage is required. Sustainable Material Solutions for Solar Energy Technologies: Processing Techniques and Applications provides an overview of the challenges that must be addressed to efficiently utilize solar energy. It looks at novel materials and device architectures that have been developed to optimize energy conversion efficiencies and minimize environmental impacts. Advances in technologies for harnessing solar energy are extensively discussed, with topics including materials processing, device fabrication, sustainability of materials and manufacturing, and current state-of-the-art. Leading international experts discuss the applications, challenges and future prospects of research in this increasingly vital field, providing a valuable resource for students and all researchers working in this field. Explores the fundamentals of sustainable materials for solar energy applications with in-depth discussions of most promising material solutions for solar energy technologies: photocatalysis, photovoltaic, hydrogen production, harvesting and storage Discusses the environmental challenges to be overcome and importance of efficient materials utilization for clean energy Looks at design materials processing and optimization of device fabrication via metrics such as power-to-weight ratio, effectiveness at EOL compared to BOL, and life-cycle analysis

Carbonaceous Materials and Future Energy
Author : Ramendra Sundar Dey,Taniya Purkait,Navpreet Kamboj,Manisha Das
Publisher : CRC Press
Release Date : 2019-11-27
ISBN 10 : 9780815347880
Pages : 174 pages
GET BOOK!

Carbonaceous Materials and Future Energy: Clean and Renewable Energy Sources provides a systematic analysis of the emerging renewable energy alternatives to fossil fuel and their impact on the current socio-economic premise, with carbonaceous chemistry at their base. The present-day fossil fuel-dependent energy scenario is obsolete, rapidly decaying with resource constraints and sparking climate change risks like global warming; therefore, a technological revolution is needed in terms of global energy sustainability. This book is a humble attempt to recognise various contemporary as well as transpiring alternative state-of-the-art energy technologies, and the immense potential carbon materials have in changing the future face of energy. Carbon is the most earth-abundant material with an awe-inspiring range of allotropes that render wonderful properties such as tunable morphology, electrical conductivity, impressive surface area, etc., when explored in the nanoscale. Therefore, carbon has the ability to replace expensive and corrosive metals as electrodes in various existing energy technologies, especially in storage, conversion and harvesting. Carbon-based composite materials offer extensive mechanical strength, although they are super lightweight and can be placed in portable devices, yet perform for longer times with the added benefit of recyclability. This book features discussions on the ecological impacts of the existing fossil fuel-based energy technologies along with various global energy prediction indicators that dictate the integrated risk, the multi-scale changes as well as the need for sustainable alternatives. It also highlights various state-of-the-art renewable energy techniques, including solar photovoltaics, wind, geothermal, and biowaste-based energy. Most importantly, recognition is given to hybrid energy storage and conversion systems as today's most important and sustainable source of power based on carbonaceous materials, especially their abundance, tunability, and recyclability. The author then focuses on the integration of available experimental information with future prospects for delivering real-world solutions to existing energy scarcity and helping to unravel sustainable routes with improved energy laws and policies. Features Detailed discussion about the current worldwide energy crisis at the societal scale and the gradual growth of alternative sustainable energy options Elucidation of the role of carbon in revolutionising nanoscience and its bright prospects in developing the future energy scenario with its abundance, eco-friendly nature as well as recyclability Extensive discussion of various state-of-the-art energy systems including hybrid technologies and their stages of technological maturity, commercialisation, and future prospects. Presentation of information in an accessible way for a broad audience; especially students, researchers, and scientists, working in the vast field of energy, looking for concise information about current and future energy solutions and exploring them with carbonaceous chemistry ------------------------------------------------------------------------------------------------------- This book gives an integrative overview about how the next-generation energy technology can be built upon the current and future prospects of carbonaceous chemistry. It includes extensive literature-survey analysis as well as detailed discussion of the commercialisation from the laboratory scale to realising the dream of decentralising grid-based electric supply with sustainable energy. Therefore, the book may serve as a prospective source for multi-disciplinary energy researchers searching for viable renewable energy solutions in terms of complex global sustainability, making it an essential guide and reference.

Materials for Sustainable Energy
Author : N.A
Publisher : Academic Press
Release Date : 2018-07-06
ISBN 10 : 0128150785
Pages : 450 pages
GET BOOK!

Materials for Sustainable Energy, Volume 72, the latest release in the Advances in Inorganic Chemistry series presents timely and informative summaries on the current progress in a variety of subject areas. In this volume, concise, authoritative reviews provide updates on the photocatalytic generation of solar fuels (heterogeneous systems), Photocatalytic materials for energy and environment, The photoelectrocatalytic production of solar fuels, Artificial photosynthesis (homogeneous catalysis), The photocatalytic synthesis of chemicals, Dye sensitized solar cells, Supercapacitors, Lithium ion cells, Catalytic air purification (VOCs, soot), Catalytic air purification (NOx), and more. Features comprehensive reviews on the latest developments in inorganic reaction mechanisms, a subfield of inorganic chemistry Includes contributions from leading experts in the field of inorganic reaction mechanisms Serves as an indispensable reference to advanced researchers in inorganic reaction mechanisms

Renewable Materials and Green Technology Products
Author : Shrikaant Kulkarni,Ann Rose Abraham,A. K. Haghi
Publisher : CRC Press
Release Date : 2021-05-11
ISBN 10 : 1000090248
Pages : 276 pages
GET BOOK!

Renewable Materials and Green Technology Products: Environmental and Safety Aspects looks at the design, manufacture, and use of efficient, effective, safe, and more environmentally benign chemical products and processes. It includes a broad range of application-based solutions to the development of renewable materials and green technology. The latest trends in the green synthesis and properties of CNs are presented in the first chapter of this book for generating social awareness about sustainable developments. The book goes on to highlight the naissance and progressive trail of microwave-assisted synthesis of metal oxide nanoparticles, for a clean and green technology tool. Chapters discuss green technological alternatives for the global abatement of air pollution, effective use and treatment of water and wastewater, renewable power generation from solar PV cells, carbon-based nanomaterials synthesized using green protocol for sustainable development, green technologies that help to achieve economic development without harming the environment, technical solutions to cut down the quantum of N losses, conventional processing techniques in developing the bionanocomposites as the biocatalyst, and more.

Encyclopedia of Renewable and Sustainable Materials
Author : N.A
Publisher : Elsevier
Release Date : 2020-01-09
ISBN 10 : 0128131969
Pages : 4252 pages
GET BOOK!

Encyclopedia of Renewable and Sustainable Materials provides a comprehensive overview, covering research and development on all aspects of renewable, recyclable and sustainable materials. The use of renewable and sustainable materials in building construction, the automotive sector, energy, textiles and others can create markets for agricultural products and additional revenue streams for farmers, as well as significantly reduce carbon dioxide (CO2) emissions, manufacturing energy requirements, manufacturing costs and waste. This book provides researchers, students and professionals in materials science and engineering with tactics and information as they face increasingly complex challenges around the development, selection and use of construction and manufacturing materials. Covers a broad range of topics not available elsewhere in one resource Arranged thematically for ease of navigation Discusses key features on processing, use, application and the environmental benefits of renewable and sustainable materials Contains a special focus on sustainability that will lead to the reduction of carbon emissions and enhance protection of the natural environment with regard to sustainable materials

Recent Developments in Photovoltaic Materials and Devices
Author : Natarajan Prabaharan,Marc Rosen,Pietro Elia Campana
Publisher : BoD – Books on Demand
Release Date : 2019-02-13
ISBN 10 : 1789854032
Pages : 152 pages
GET BOOK!

This book covers the recent advances in solar photovoltaic materials and their innovative applications. Many problems in material science are explored for enhancing the understanding of solar cells and the development of more efficient, less costly, and more stable cells. This book is crucial and relevant at this juncture and provides a historical overview focusing primarily on the exciting developments in the last decade. This book primarily covers the different Maximum Power Point Tracking control techniques that have led to the improved speed of response of solar photovoltaics, augmented search accuracy, and superior control in the presence of perturbations such as sudden variations in illumination and temperature. Furthermore, the optimal design of a photovoltaic system based on two different approaches such as consumed power and economics is discussed.

Fundamentals of Materials for Energy and Environmental Sustainability
Author : David S. Ginley,David Cahen
Publisher : Cambridge University Press
Release Date : 2011-11-30
ISBN 10 : 1139502689
Pages : 329 pages
GET BOOK!

How will we meet rising energy demands? What are our options? Are there viable long-term solutions for the future? Learn the fundamental physical, chemical and materials science at the heart of: • Renewable/non-renewable energy sources • Future transportation systems • Energy efficiency • Energy storage Whether you are a student taking an energy course or a newcomer to the field, this textbook will help you understand critical relationships between the environment, energy and sustainability. Leading experts provide comprehensive coverage of each topic, bringing together diverse subject matter by integrating theory with engaging insights. Each chapter includes helpful features to aid understanding, including a historical overview to provide context, suggested further reading and questions for discussion. Every subject is beautifully illustrated and brought to life with full color images and color-coded sections for easy browsing, making this a complete educational package. Fundamentals of Materials for Energy and Environmental Sustainability will enable today's scientists and educate future generations.

Introduction to Materials for Advanced Energy Systems
Author : Colin Tong
Publisher : Springer
Release Date : 2018-12-12
ISBN 10 : 3319980025
Pages : 911 pages
GET BOOK!

This first of its kind text enables today’s students to understand current and future energy challenges, to acquire skills for selecting and using materials and manufacturing processes in the design of energy systems, and to develop a cross-functional approach to materials, mechanics, electronics and processes of energy production. While taking economic and regulatory aspects into account, this textbook provides a comprehensive introduction to the range of materials used for advanced energy systems, including fossil, nuclear, solar, bio, wind, geothermal, ocean and hydropower, hydrogen, and nuclear, as well as thermal energy storage and electrochemical storage in fuel cells. A separate chapter is devoted to emerging energy harvesting systems. Integrated coverage includes the application of scientific and engineering principles to materials that enable different types of energy systems. Properties, performance, modeling, fabrication, characterization and application of structural, functional and hybrid materials are described for each energy system. Readers will appreciate the complex relationships among materials selection, optimizing design, and component operating conditions in each energy system. Research and development trends of novel emerging materials for future hybrid energy systems are also considered. Each chapter is basically a self-contained unit, easily enabling instructors to adapt the book for coursework. This textbook is suitable for students in science and engineering who seek to obtain a comprehensive understanding of different energy processes, and how materials enable energy harvesting, conversion, and storage. In setting forth the latest advances and new frontiers of research, the text also serves as a comprehensive reference on energy materials for experienced materials scientists, engineers, and physicists. Includes pedagogical features such as in-depth side bars, worked-out and end-of- chapter exercises, and many references to further reading Provides comprehensive coverage of materials-based solutions for major and emerging energy systems Brings together diverse subject matter by integrating theory with engaging insights

Renewable-Energy-Driven Future
Author : Jingzheng Ren
Publisher : Academic Press
Release Date : 2020-09-25
ISBN 10 : 0128205407
Pages : 636 pages
GET BOOK!

In order to promote the sustainable development of renewable energy and renewable-energy-driven technologies, Renewable-Energy-Driven Future: Technologies, Modelling, Applications, Sustainability and Policies provides a comprehensive view of the advanced renewable technologies and the benefits of utilizing renewable energy sources. Discussing the ways for promoting the sustainable development of renewable energy from the perspectives of technology, modelling, application, sustainability and policy, this book includes the advanced renewable-energy-driven technologies, the models for renewable energy planning and integration, the innovative applications of renewable energy sources, decision-support tools for sustainability assessment and ranking of renewable energy systems, and the regulations and policies of renewable energy. This book can benefit the researchers and experts of renewable energy by helping them to have a holistic view of renewable energy. It can also benefit the policymakers and decision-makers by helping them to make informed decisions. Presents the advanced renewable-energy-driven technologies and the innovative applications of renewable energy sources Develops the models for the efficient use of renewable energy, decision-making and the investigation of its climate and economic benefits Investigates the sustainability of renewable energy systems Features the regulations and policies of renewable energy

Greenhouse Solutions with Sustainable Energy
Author : Mark Diesendorf
Publisher : UNSW Press
Release Date : 2007
ISBN 10 : 9780868409733
Pages : 413 pages
GET BOOK!

A positive, proactive book that proposes a set of policies and strategies for implementing the most promising cleaner energy technologies by all spheres of government, business and community organisations.

Functional Materials for Sustainable Energy Applications
Author : J A Kilner,S J Skinner,S J C Irvine,P P Edwards
Publisher : Elsevier
Release Date : 2012-09-28
ISBN 10 : 0857096370
Pages : 708 pages
GET BOOK!

Global demand for low cost, efficient and sustainable energy production is ever increasing. Driven by recent discoveries and innovation in the science and technology of materials, applications based on functional materials are becoming increasingly important. Functional materials for sustainable energy applications provides an essential guide to the development and application of these materials in sustainable energy production. Part one reviews functional materials for solar power, including silicon-based, thin-film, and dye sensitized photovoltaic solar cells, thermophotovoltaic device modelling and photoelectrochemical cells. Part two focuses on functional materials for hydrogen production and storage. Functional materials for fuel cells are then explored in part three where developments in membranes, catalysts and membrane electrode assemblies for polymer electrolyte and direct methanol fuel cells are discussed, alongside electrolytes and ion conductors, novel cathodes, anodes, thin films and proton conductors for solid oxide fuel cells. Part four considers functional materials for demand reduction and energy storage, before the book concludes in part five with an investigation into computer simulation studies of functional materials. With its distinguished editors and international team of expert contributors, Functional materials for sustainable energy applications is an indispensable tool for anyone involved in the research, development, manufacture and application of materials for sustainable energy production, including materials engineers, scientists and academics in the rapidly developing, interdisciplinary field of sustainable energy. An essential guide to the development and application of functional materials in sustainable energy production Reviews functional materials for solar power Focuses on functional materials for hydrogen production and storage, fuel cells, demand reduction and energy storage

Introduction to Materials for Advanced Energy Systems
Author : Colin Tong
Publisher : Springer
Release Date : 2018-12-12
ISBN 10 : 3319980025
Pages : 911 pages
GET BOOK!

This first of its kind text enables today’s students to understand current and future energy challenges, to acquire skills for selecting and using materials and manufacturing processes in the design of energy systems, and to develop a cross-functional approach to materials, mechanics, electronics and processes of energy production. While taking economic and regulatory aspects into account, this textbook provides a comprehensive introduction to the range of materials used for advanced energy systems, including fossil, nuclear, solar, bio, wind, geothermal, ocean and hydropower, hydrogen, and nuclear, as well as thermal energy storage and electrochemical storage in fuel cells. A separate chapter is devoted to emerging energy harvesting systems. Integrated coverage includes the application of scientific and engineering principles to materials that enable different types of energy systems. Properties, performance, modeling, fabrication, characterization and application of structural, functional and hybrid materials are described for each energy system. Readers will appreciate the complex relationships among materials selection, optimizing design, and component operating conditions in each energy system. Research and development trends of novel emerging materials for future hybrid energy systems are also considered. Each chapter is basically a self-contained unit, easily enabling instructors to adapt the book for coursework. This textbook is suitable for students in science and engineering who seek to obtain a comprehensive understanding of different energy processes, and how materials enable energy harvesting, conversion, and storage. In setting forth the latest advances and new frontiers of research, the text also serves as a comprehensive reference on energy materials for experienced materials scientists, engineers, and physicists. Includes pedagogical features such as in-depth side bars, worked-out and end-of- chapter exercises, and many references to further reading Provides comprehensive coverage of materials-based solutions for major and emerging energy systems Brings together diverse subject matter by integrating theory with engaging insights