structured search for big data

Download Structured Search For Big Data ebooks in PDF, epub, tuebl, textbook from Skinvaders.Com. Read online Structured Search For Big Data books on any device easily. We cannot guarantee that Structured Search For Big Data book is available. Click download or Read Online button to get book, you can choose FREE Trial service. READ as many books as you like (Personal use).

Structured Search for Big Data
Author : Mikhail Gilula
Publisher : Morgan Kaufmann
Release Date : 2015-08-26
ISBN 10 : 012804652X
Pages : 114 pages
GET BOOK!

The WWW era made billions of people dramatically dependent on the progress of data technologies, out of which Internet search and Big Data are arguably the most notable. Structured Search paradigm connects them via a fundamental concept of key-objects evolving out of keywords as the units of search. The key-object data model and KeySQL revamp the data independence principle making it applicable for Big Data and complement NoSQL with full-blown structured querying functionality. The ultimate goal is extracting Big Information from the Big Data. As a Big Data Consultant, Mikhail Gilula combines academic background with 20 years of industry experience in the database and data warehousing technologies working as a Sr. Data Architect for Teradata, Alcatel-Lucent, and PayPal, among others. He has authored three books, including The Set Model for Database and Information Systems and holds four US Patents in Structured Search and Data Integration. Conceptualizes structured search as a technology for querying multiple data sources in an independent and scalable manner. Explains how NoSQL and KeySQL complement each other and serve different needs with respect to big data Shows the place of structured search in the internet evolution and describes its implementations including the real-time structured internet search

Exam Prep for: Structured Search for Big Data
Author : N.A
Publisher : N.A
Release Date :
ISBN 10 :
Pages : 329 pages
GET BOOK!

Structured Search for Big Data
Author : Mikhail Gilula
Publisher : Morgan Kaufmann
Release Date : 2015-08-28
ISBN 10 : 9780128046319
Pages : 114 pages
GET BOOK!

The WWW era made billions of people dramatically dependent on the progress of data technologies, out of which Internet search and Big Data are arguably the most notable. Structured Search paradigm connects them via a fundamental concept of key-objects evolving out of keywords as the units of search. The key-object data model and KeySQL revamp the data independence principle making it applicable for Big Data and complement NoSQL with full-blown structured querying functionality. The ultimate goal is extracting Big Information from the Big Data. As a Big Data Consultant, Mikhail Gilula combines academic background with 20 years of industry experience in the database and data warehousing technologies working as a Sr. Data Architect for Teradata, Alcatel-Lucent, and PayPal, among others. He has authored three books, including The Set Model for Database and Information Systems and holds four US Patents in Structured Search and Data Integration. Conceptualizes structured search as a technology for querying multiple data sources in an independent and scalable manner. Explains how NoSQL and KeySQL complement each other and serve different needs with respect to big data Shows the place of structured search in the internet evolution and describes its implementations including the real-time structured internet search

Big Data Analytics for Large-Scale Multimedia Search
Author : Stefanos Vrochidis,Benoit Huet,Edward Y. Chang,Ioannis Kompatsiaris
Publisher : John Wiley & Sons
Release Date : 2019-03-18
ISBN 10 : 111937698X
Pages : 376 pages
GET BOOK!

A timely overview of cutting edge technologies for multimedia retrieval with a special emphasis on scalability The amount of multimedia data available every day is enormous and is growing at an exponential rate, creating a great need for new and more efficient approaches for large scale multimedia search. This book addresses that need, covering the area of multimedia retrieval and placing a special emphasis on scalability. It reports the recent works in large scale multimedia search, including research methods and applications, and is structured so that readers with basic knowledge can grasp the core message while still allowing experts and specialists to drill further down into the analytical sections. Big Data Analytics for Large-Scale Multimedia Search covers: representation learning, concept and event-based video search in large collections; big data multimedia mining, large scale video understanding, big multimedia data fusion, large-scale social multimedia analysis, privacy and audiovisual content, data storage and management for big multimedia, large scale multimedia search, multimedia tagging using deep learning, interactive interfaces for big multimedia and medical decision support applications using large multimodal data. Addresses the area of multimedia retrieval and pays close attention to the issue of scalability Presents problem driven techniques with solutions that are demonstrated through realistic case studies and user scenarios Includes tables, illustrations, and figures Offers a Wiley-hosted BCS that features links to open source algorithms, data sets and tools Big Data Analytics for Large-Scale Multimedia Search is an excellent book for academics, industrial researchers, and developers interested in big multimedia data search retrieval. It will also appeal to consultants in computer science problems and professionals in the multimedia industry.

Big Data in Complex Systems
Author : Aboul Ella Hassanien,Ahmad Taher Azar,Vaclav Snasael,Janusz Kacprzyk,Jemal H. Abawajy
Publisher : Springer
Release Date : 2015-01-02
ISBN 10 : 331911056X
Pages : 499 pages
GET BOOK!

This volume provides challenges and Opportunities with updated, in-depth material on the application of Big data to complex systems in order to find solutions for the challenges and problems facing big data sets applications. Much data today is not natively in structured format; for example, tweets and blogs are weakly structured pieces of text, while images and video are structured for storage and display, but not for semantic content and search. Therefore transforming such content into a structured format for later analysis is a major challenge. Data analysis, organization, retrieval, and modeling are other foundational challenges treated in this book. The material of this book will be useful for researchers and practitioners in the field of big data as well as advanced undergraduate and graduate students. Each of the 17 chapters in the book opens with a chapter abstract and key terms list. The chapters are organized along the lines of problem description, related works, and analysis of the results and comparisons are provided whenever feasible.

Semantic Keyword-Based Search on Structured Data Sources
Author : Andrea Calì,Dorian Gorgan,Martín Ugarte
Publisher : Springer
Release Date : 2017-02-13
ISBN 10 : 3319536400
Pages : 197 pages
GET BOOK!

This book constitutes the thoroughly refereed post-conference proceedings of the Second COST Action IC1302 International KEYSTONE Conference on Semantic Keyword-Based Search on Structured Data Sources, IKC 2016, held in Cluj-Napoca, Romania, in September 2016. The 15 revised full papers and 2 invited papers are reviewed and selected from 18 initial submissions and cover the areas of keyword extraction, natural language searches, graph databases, information retrieval techniques for keyword search and document retrieval.

Knowledge of the Law in the Big Data Age
Author : G. Peruginelli,S. Faro
Publisher : IOS Press
Release Date : 2019-07-23
ISBN 10 : 1614999856
Pages : 304 pages
GET BOOK!

The changes brought about by digital technology and the consequent explosion of information known as Big Data have brought opportunities and challenges in all areas of society, and the law is no exception. This book, Knowledge of the Law in the Big Data Age contains a selection of the papers presented at the conference ‘Law via the Internet 2018’, held in Florence, Italy, on 11-12 October 2018. This annual conference of the ‘Free Access to Law Movement’ (http://www.fatlm.org) hosted more than 60 international speakers from universities, government and research bodies as well as EU institutions. Topics covered range from free access to law and Big Data and data analytics in the legal domain, to policy issues concerning access, publishing and the dissemination of legal information, tools to support democratic participation and opportunities for digital democracy. The book is divided into 3 sections: Part I provides an introductory background, covering aspects such as the evolution of legal science and models for representing the law; Part II addresses the present and future of access to law and to various legal information sources; and Part III covers updates in projects, initiatives, and concrete achievements in the field. The book provides an overview of the practical implementation of legal information systems and the tools to manage this special kind of information, as well as some of the critical issues which must be faced, and will be of interest to all those working at the intersection of law and technology.

Big Data For Dummies
Author : Judith S. Hurwitz,Alan Nugent,Fern Halper,Marcia Kaufman
Publisher : John Wiley & Sons
Release Date : 2013-04-02
ISBN 10 : 1118644174
Pages : 336 pages
GET BOOK!

Find the right big data solution for your business ororganization Big data management is one of the major challenges facingbusiness, industry, and not-for-profit organizations. Data setssuch as customer transactions for a mega-retailer, weather patternsmonitored by meteorologists, or social network activity can quicklyoutpace the capacity of traditional data management tools. If youneed to develop or manage big data solutions, you'll appreciate howthese four experts define, explain, and guide you through this newand often confusing concept. You'll learn what it is, why itmatters, and how to choose and implement solutions that work. Effectively managing big data is an issue of growing importanceto businesses, not-for-profit organizations, government, and ITprofessionals Authors are experts in information management, big data, and avariety of solutions Explains big data in detail and discusses how to select andimplement a solution, security concerns to consider, data storageand presentation issues, analytics, and much more Provides essential information in a no-nonsense,easy-to-understand style that is empowering Big Data For Dummies cuts through the confusion and helpsyou take charge of big data solutions for your organization.

Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing
Author : Velayutham, Sathiyamoorthi
Publisher : IGI Global
Release Date : 2021-01-29
ISBN 10 : 1799831132
Pages : 381 pages
GET BOOK!

In today’s market, emerging technologies are continually assisting in common workplace practices as companies and organizations search for innovative ways to solve modern issues that arise. Prevalent applications including internet of things, big data, and cloud computing all have noteworthy benefits, but issues remain when separately integrating them into the professional practices. Significant research is needed on converging these systems and leveraging each of their advantages in order to find solutions to real-time problems that still exist. Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing is a pivotal reference source that provides vital research on the relation between these technologies and the impact they collectively have in solving real-world challenges. While highlighting topics such as cloud-based analytics, intelligent algorithms, and information security, this publication explores current issues that remain when attempting to implement these systems as well as the specific applications IoT, big data, and cloud computing have in various professional sectors. This book is ideally designed for academicians, researchers, developers, computer scientists, IT professionals, practitioners, scholars, students, and engineers seeking research on the integration of emerging technologies to solve modern societal issues.

Big Data for Managers
Author : Atal Malviya,Mike Malmgren
Publisher : Routledge
Release Date : 2018-12-18
ISBN 10 : 0429952600
Pages : 162 pages
GET BOOK!

In today’s fast growing digital world, the web, mobile, social networks and other digital platforms are producing enormous amounts of data that hold intelligence and valuable information. Correctly used it has the power to create sustainable value in different forms for businesses. The commonly used term for this data is Big Data, which includes structured, unstructured and hybrid structured data. However, Big Data is of limited value unless insightful information can be extracted from the sources of data. The solution is Big Data analytics, and how managers and executives can capture value from this vast resource of information and insights. This book develops a simple framework and a non-technical approach to help the reader understand, digest and analyze data, and produce meaningful analytics to make informed decisions. It will support value creation within businesses, from customer care to product innovation, from sales and marketing to operational performance. The authors provide multiple case studies on global industries and business units, chapter summaries and discussion questions for the reader to consider and explore. Big Data for Managers also presents small cases and challenges for the reader to work on – making this a thorough and practical guide for students and managers.

The Text Mining Handbook
Author : Ronen Feldman,James Sanger
Publisher : Cambridge University Press
Release Date : 2007
ISBN 10 : 0521836573
Pages : 410 pages
GET BOOK!

Text mining is a new and exciting area of computer science research that tries to solve the crisis of information overload by combining techniques from data mining, machine learning, natural language processing, information retrieval, and knowledge management. Similarly, link detection – a rapidly evolving approach to the analysis of text that shares and builds upon many of the key elements of text mining – also provides new tools for people to better leverage their burgeoning textual data resources. The Text Mining Handbook presents a comprehensive discussion of the state-of-the-art in text mining and link detection. In addition to providing an in-depth examination of core text mining and link detection algorithms and operations, the book examines advanced pre-processing techniques, knowledge representation considerations, and visualization approaches. Finally, the book explores current real-world, mission-critical applications of text mining and link detection in such varied fields as M&A business intelligence, genomics research and counter-terrorism activities.

Hands-On Big Data Modeling
Author : James Lee,Tao Wei,Suresh Kumar Mukhiya
Publisher : Packt Publishing Ltd
Release Date : 2018-11-30
ISBN 10 : 1788626087
Pages : 306 pages
GET BOOK!

Solve all big data problems by learning how to create efficient data models Key Features Create effective models that get the most out of big data Apply your knowledge to datasets from Twitter and weather data to learn big data Tackle different data modeling challenges with expert techniques presented in this book Book Description Modeling and managing data is a central focus of all big data projects. In fact, a database is considered to be effective only if you have a logical and sophisticated data model. This book will help you develop practical skills in modeling your own big data projects and improve the performance of analytical queries for your specific business requirements. To start with, you’ll get a quick introduction to big data and understand the different data modeling and data management platforms for big data. Then you’ll work with structured and semi-structured data with the help of real-life examples. Once you’ve got to grips with the basics, you’ll use the SQL Developer Data Modeler to create your own data models containing different file types such as CSV, XML, and JSON. You’ll also learn to create graph data models and explore data modeling with streaming data using real-world datasets. By the end of this book, you’ll be able to design and develop efficient data models for varying data sizes easily and efficiently. What you will learn Get insights into big data and discover various data models Explore conceptual, logical, and big data models Understand how to model data containing different file types Run through data modeling with examples of Twitter, Bitcoin, IMDB and weather data modeling Create data models such as Graph Data and Vector Space Model structured and unstructured data using Python and R Who this book is for This book is great for programmers, geologists, biologists, and every professional who deals with spatial data. If you want to learn how to handle GIS, GPS, and remote sensing data, then this book is for you. Basic knowledge of R and QGIS would be helpful.