size effects in plasticity

Download Size Effects In Plasticity ebooks in PDF, epub, tuebl, textbook from Skinvaders.Com. Read online Size Effects In Plasticity books on any device easily. We cannot guarantee that Size Effects In Plasticity book is available. Click download or Read Online button to get book, you can choose FREE Trial service. READ as many books as you like (Personal use).

Size Effects in Plasticity
Author : George Voyiadjis,Mohammadreza Yaghoobi
Publisher : Academic Press
Release Date : 2019-08-01
ISBN 10 : 0128135131
Pages : 408 pages
GET BOOK!

Size Effects in Plasticity: From Macro to Nano provides concise explanations of all available methods in this area, from atomistic simulation, to non-local continuum models to capture size effects. It then compares their applicability to a wide range of research scenarios. This essential guide addresses basic principles, numerical issues and computation, applications and provides code which readers can use in their own modeling projects. Researchers in the fields of computational mechanics, materials science and engineering will find this to be an ideal resource when they address the size effects observed in deformation mechanisms and strengths of various materials. Provides a comprehensive reference on the field of size effects and a review of mechanics of materials research in all scales Explains all major methods of size effects simulation, including non-local continuum models, non-local crystal plasticity, discrete dislocation methods and molecular dynamics Includes source codes that readers can use in their own projects

Atomistic Simulation Studies of Size Effects in Plasticity and Dislocation Patterning
Author : Neil Scott Weingarten
Publisher : N.A
Release Date : 2008
ISBN 10 :
Pages : 294 pages
GET BOOK!

Size Effects on Plasticity and Fatigue Microstructure Evolution in Fcc Single Crystals
Author : Jaafar Abbas El-Awady,Naimisha Mehta
Publisher : Proquest, UMI Dissertation Publishing
Release Date : 2011-09
ISBN 10 : 9781243601766
Pages : 150 pages
GET BOOK!

Enjoy a wide range of dissertations and theses published from graduate schools and universities from around the world. Covering a wide range of academic topics, we are happy to increase overall global access to these works and make them available outside of traditional academic databases. These works are packaged and produced by BiblioLabs under license by ProQuest UMI. The description for these dissertations was produced by BiblioLabs and is in no way affiliated with, in connection with, or representative of the abstract meta-data associated with the dissertations published by ProQuest UMI. If you have any questions relating to this particular dissertation, you may contact BiblioLabs directly.

Gradient-Enhanced Continuum Plasticity
Author : George Z. Voyiadjis,Yooseob Song
Publisher : Elsevier
Release Date : 2020-03-27
ISBN 10 : 0128177675
Pages : 404 pages
GET BOOK!

Gradient-Enhanced Continuum Plasticity provides an expansive review of gradient-enhanced continuum plasticity from the initial stage to current research trends in experimental, theoretical, computational and numerical investigations. Starting with an overview of continuum mechanics and classical plasticity, the book then delves into concise lessons covering basic principles and applications, such as outlining the use of the finite element method to solve problems with size effects, mesh sensitivity and high velocity impact loading. All major theories are explored, providing readers with a guide to understanding the various concepts of and differences between an array of gradient-enhanced continuum plasticity models. Outlines the concepts of, and differences between, various gradient-enhanced continuum plasticity models Provides guidance on problem-solving for size effects, mesh-sensitivity tests and thermo-mechanical coupling Reviews experimental, numerical and theoretical issues in gradient-enhanced continuum plasticity Describes micromechanical aspects from experimental observations

Micrometre-scale Plasticity Size Effects in Metals and Ceramics
Author : Tingting Zhu
Publisher : N.A
Release Date : 2008
ISBN 10 :
Pages : 329 pages
GET BOOK!

Size Effects in Dislocation-mediated Plasticity in Copper Alloys with Different Microstructural Length-scales
Author : Alexandra Cackett
Publisher : N.A
Release Date : 2020
ISBN 10 :
Pages : 329 pages
GET BOOK!

Exploring Plasticity and Size Effects in Diamond-structured Crystals at Micro-scales Using Micromechanics
Author : Ming Chen
Publisher : N.A
Release Date : 2019
ISBN 10 :
Pages : 329 pages
GET BOOK!

Mechanics and Physics of Solids at Micro- and Nano-Sscales
Author : Ioan R. Ionescu,Sylvain Queyreau,Catalin R. Picu,Oguz Umut Salman
Publisher : John Wiley & Sons
Release Date : 2020-01-09
ISBN 10 : 1786305313
Pages : 260 pages
GET BOOK!

Chronicling the 11th US–France Mechanics and physics of solids at macro- and nano-scales symposium, organized by ICACM (International Center for Applied Computational Mechanics) in Paris, June 2018, this book addresses the breadth of issues raised. It covers a comprehensive range of scientific and technological topics (from elementary plastic events in metals and materials in harsh environments to bio-engineered and bio-mimicking materials), offering a representative perspective on state-of-the-art research and materials. Expounding on the issues related to mesoscale modeling, the first part of the book addresses the representation of plastic deformation at both extremes of the scale – between nano- and macro- levels. The second half of the book examines the mechanics and physics of soft materials, polymers and materials made from fibers or molecular networks.

Dislocation Mechanism-Based Crystal Plasticity
Author : Zhuo Zhuang,Zhanli Liu,Yinan Cui
Publisher : Academic Press
Release Date : 2019-04-12
ISBN 10 : 0128145927
Pages : 450 pages
GET BOOK!

Dislocation Based Crystal Plasticity: Theory and Computation at Micron and Submicron Scale provides a comprehensive introduction to the continuum and discreteness dislocation mechanism-based theories and computational methods of crystal plasticity at the micron and submicron scale. Sections cover the fundamental concept of conventional crystal plasticity theory at the macro-scale without size effect, strain gradient crystal plasticity theory based on Taylar law dislocation, mechanism at the mesoscale, phase-field theory of crystal plasticity, computation at the submicron scale, including single crystal plasticity theory, and the discrete-continuous model of crystal plasticity with three-dimensional discrete dislocation dynamics coupling finite element method (DDD-FEM). Three kinds of plastic deformation mechanisms for submicron pillars are systematically presented. Further sections discuss dislocation nucleation and starvation at high strain rate and temperature effect for dislocation annihilation mechanism. Covers dislocation mechanism-based crystal plasticity theory and computation at the micron and submicron scale Presents crystal plasticity theory without size effect Deals with the 3D discrete-continuous (3D DCM) theoretic and computational model of crystal plasticity with 3D discrete dislocation dynamics (3D DDD) coupling finite element method (FEM) Includes discrete dislocation mechanism-based theory and computation at the submicron scale with single arm source, coating micropillar, lower cyclic loading pillars, and dislocation starvation at the submicron scale

Mechanics of Strain Gradient Materials
Author : Albrecht Bertram,Samuel Forest
Publisher : Springer Nature
Release Date : 2020-06-30
ISBN 10 : 3030438309
Pages : 171 pages
GET BOOK!

Over the past 50 years, strain gradient material theories have been developed for the continuum modeling of size effects in materials and structures in terms of their elasticity, plasticity and fracturing. This book puts forward a unifying perspective to combine existing theories involving the higher order gradient of the strain tensor, or of plastic strain. It begins by reviewing experimental findings on the existence (or non-existence) of size effects on the mechanics of materials. In turn, the book devises first, second and higher order strain gradient theories from general principles, and presents constitutive frameworks that satisfy thermodynamic requirements. The special case of strain gradient plasticity is then developed and illustrated via computational analyses of size effects on the plasticity of metals at small scales. In closing, the book explains the origin of gradient effects in the case of lattice structures by drawing on homogenization theory.

The Plasticity of Metals at the Sub-micrometer Scale and Dislocation Dynamics in a Thin Film
Author : N.A
Publisher : Stanford University
Release Date : 2011
ISBN 10 :
Pages : 329 pages
GET BOOK!

Nanotechnology has played a significant role in the development of useful engineering devices and in the synthesis of new classes of materials. For the reliable design of devices and for structural applications of materials with micro- or nano-sized features, nanotechnology has always called for an understanding of the mechanical properties of materials at small length scales. Thus, it becomes important to develop new experimental techniques to allow reliable mechanical testing at small scales. At the same time, the development of computational techniques is necessary to interpret the experimentally observed phenomena. Currently, microcompression testing of micropillars, which are fabricated by focused-ion beam (FIB) milling, is one of the most popular experimental methods for measuring the mechanical properties at the micrometer scale. Also, dislocation dynamics codes have been extensively developed to study the local evolution of dislocation structures. Therefore, we conducted both experimental and theoretical studies that shed new light on the factors that control the strength and plasticity of crystalline materials at the sub-micrometer scale. In the experimental work, we produced gold nanopillars by focused-ion beam milling, and conducted microcompression tests to obtain the stress-strain curves. Firstly, the size effects on the strength of gold nanopillars were studied, and "Smaller is Stronger" was observed. Secondly, we tried to change the dislocation densities to control the strength of gold nanopillars by prestraining and annealing. The results showed that prestraining dramatically reduces the flow strength of nanopillars while annealing restores the strength to the pristine levels. Transmission electron microscopy (TEM) revealed that the high dislocation density (~1015 m-2) of prestrained nanopillars significantly decreased after heavy plastic deformation. In order to interpret this TEM observation, potential dislocation source structures were geometrically analyzed. We found that the insertion of jogged dislocations before relaxation or enabling cross-slip during plastic flow are prerequisites for the formation of potentially strong natural pinning points and single arm dislocation sources. At the sub-micron scale, these conditions are most likely absent, and we argue that mobile dislocation starvation would occur naturally in the course of plastic flow. Two more outstanding issues have also been studied in this dissertation. The first involves the effects of FIB milling on the mechanical properties. Since micropillars are made by FIB milling, the damage layer at the free surface is always formed and would be expected to affect the mechanical properties at a sub-micron scale. Thus, pristine gold microparticles were produced by a solid-state dewetting technique, and the effects of FIB milling on both pristine and prestrained microparticles were examined via microcompression testing. These experiments revealed that FIB milling significantly reduces the strength of pristine microparticles, but does not alter that of prestrained microparticles. Thus, we confirmed that if there are pre-existing mobile-dislocations present in the crystal, FIB milling does not affect the mechanical properties. The second issue is the scaling law commonly used to describe the strength of micropillars as a function of sample size. For the scaling law, the power-law approximation has been widely used without understanding fundamental physics in it. Thus, we tried to analyze the power-law approximation in a quantitative manner with the well-known single arm source model. Material parameters, such as the friction stress, the anisotropic shear modulus, the magnitude of Burgers vector and the dislocation density, were explored to understand their effects on the scaling behavior. Considering these effects allows one to rationalize the observed material-dependent power-law exponents quantitatively. In another part of the dissertation, a