silicon anode systems for lithium ion batteries

Download Silicon Anode Systems For Lithium Ion Batteries ebooks in PDF, epub, tuebl, textbook from Skinvaders.Com. Read online Silicon Anode Systems For Lithium Ion Batteries books on any device easily. We cannot guarantee that Silicon Anode Systems For Lithium Ion Batteries book is available. Click download or Read Online button to get book, you can choose FREE Trial service. READ as many books as you like (Personal use).

Silicon Anode Systems for Lithium-Ion Batteries
Author : Prashant Kumta,Aloysius Hepp,Moni K Datta,Oleg I. Velikokhatnyi
Publisher : Elsevier
Release Date : 2021-09-15
ISBN 10 : 9780128196601
Pages : 480 pages
GET BOOK!

Silicon Anode Systems for Lithium-Ion Batteries is an introduction to silicon anodes as an alternative to traditional graphite-based anodes. The book provides a comprehensive overview including abundance, system voltage, and capacity. It provides key insights into the basic challenges faced by the materials system such as new configurations and concepts for overcoming the expansion and contraction related problems. This book has been written for the practitioner, researcher or developer of commercial technologies. Provides a thorough explanation of the advantages, challenge, materials science, and commercial prospects of silicon and related anode materials for lithium-ion batteries Provides insights into practical issues including processing and performance of advanced Si-based materials in battery-relevant materials systems Discusses suppressants in electrolytes to minimize adverse effects of solid electrolyte interphase (SEI) formation and safety limitations associated with this technology

Electrochemical Energy
Author : Pei Kang Shen,Chao-Yang Wang,San Ping Jiang,Xueliang Sun,Jiujun Zhang
Publisher : CRC Press
Release Date : 2018-10-08
ISBN 10 : 1482227282
Pages : 622 pages
GET BOOK!

Electrochemical Energy: Advanced Materials and Technologies covers the development of advanced materials and technologies for electrochemical energy conversion and storage. The book was created by participants of the International Conference on Electrochemical Materials and Technologies for Clean Sustainable Energy (ICES-2013) held in Guangzhou, China, and incorporates select papers presented at the conference. More than 300 attendees from across the globe participated in ICES-2013 and gave presentations in six major themes: Fuel cells and hydrogen energy Lithium batteries and advanced secondary batteries Green energy for a clean environment Photo-Electrocatalysis Supercapacitors Electrochemical clean energy applications and markets Comprised of eight sections, this book includes 25 chapters featuring highlights from the conference and covering every facet of synthesis, characterization, and performance evaluation of the advanced materials for electrochemical energy. It thoroughly describes electrochemical energy conversion and storage technologies such as batteries, fuel cells, supercapacitors, hydrogen generation, and their associated materials. The book contains a number of topics that include electrochemical processes, materials, components, assembly and manufacturing, and degradation mechanisms. It also addresses challenges related to cost and performance, provides varying perspectives, and emphasizes existing and emerging solutions. The result of a conference encouraging enhanced research collaboration among members of the electrochemical energy community, Electrochemical Energy: Advanced Materials and Technologies is dedicated to the development of advanced materials and technologies for electrochemical energy conversion and storage and details the technologies, current achievements, and future directions in the field.

Next-generation Batteries with Sulfur Cathodes
Author : Krzysztof Jan Siczek
Publisher : Academic Press
Release Date : 2019-03-06
ISBN 10 : 0128166126
Pages : 259 pages
GET BOOK!

Next-Generation Batteries with Sulfur Cathodes provides a comprehensive review of a modern class of batteries with sulfur cathodes, particularly lithium-sulfur cathodes. The book covers recent trends, advantages and disadvantages in Li-S, Na-S, Al-S and Mg-S batteries and why these batteries are very promising for applications in hybrid and electric vehicles. Battery materials and modelling are also dealt with, as is their design, the physical phenomena existing in batteries, and a comparison of batteries between commonly used lithium-ion batteries and the new class of batteries with sulfur cathodes that are useful for devices like vehicles, wind power aggregates, computers and measurement units. Provides solutions for the recycling of batteries with sulfur cathodes Includes the effects of analysis and pro and cons of Li-S, Na-S, Al-S, Mg-S and Zn-S batteries Describes state-of-the-art technological developments and possible applications

Emerging Nanotechnologies in Rechargeable Energy Storage Systems
Author : Lide M Rodriguez-Martinez,Noshin Omar
Publisher : William Andrew
Release Date : 2017-02-06
ISBN 10 : 0323429963
Pages : 346 pages
GET BOOK!

Emerging Nanotechnologies in Rechargeable Energy Storage Systems addresses the technical state-of-the-art of nanotechnology for rechargeable energy storage systems. Materials characterization and device-modeling aspects are covered in detail, with additional sections devoted to the application of nanotechnology in batteries for electrical vehicles. In the later part of the book, safety and regulatory issues are thoroughly discussed. Users will find a valuable source of information on the latest developments in nanotechnology in rechargeable energy storage systems. This book will be of great use to researchers and graduate students in the fields of nanotechnology, electrical energy storage, and those interested in materials and electrochemical cell development. Gives readers working in the rechargeable energy storage sector a greater awareness on how novel nanotechnology oriented methods can help them develop higher-performance batteries and supercapacitor systems Provides focused coverage of the development, process, characterization techniques, modeling, safety and applications of nanomaterials for rechargeable energy storage systems Presents readers with an informed choice in materials selection for rechargeable energy storage devices

Energy has always been one of the most important factors in any type of human or industrial endeavor. Clean energy and alternative energy sources are slowly but steadily replacing fossil fuels, the over-dependence on which have led to many environmental and economic troubles over the past century. The main challenge that needs to be addressed in switching to clean energy is storing it for use in the electrical grid and transportation systems. Lithium ion batteries are currently one of the most promising energy storage devices and tremendous amount of research is being done in high capacity anode and cathode materials, and better electrolytes and battery packs as well, leading to overall high efficiency and capacity energy storage systems. Polymer derived ceramics (PDCs) are a special class of ceramics, usually used in high temperature applications, but some silicon based PDCs have demonstrated good electrochemical properties in lithium ion batteries. The goal of this research is to explore a special hybrid ceramic of titanium dioxide (TiO2) and silicon oxy carbide (SiOC) ceramic derived from 1,3,5,7 -- tetravinyl -- 1,3,5,7 -- tetramethylcyclotetrasiloxane (TTCS) polymer for use in lithium ion batteries and investigate the source of its properties which might make the ceramic particularly useful in some highly specialized energy storage applications.

Advances in Batteries for Medium and Large-Scale Energy Storage
Author : C Menictas,M Skyllas-Kazacos,T M Lim
Publisher : Elsevier
Release Date : 2014-12-09
ISBN 10 : 1782420223
Pages : 634 pages
GET BOOK!

As energy produced from renewable sources is increasingly integrated into the electricity grid, interest in energy storage technologies for grid stabilisation is growing. This book reviews advances in battery technologies and applications for medium and large-scale energy storage. Chapters address advances in nickel, sodium and lithium-based batteries. Other chapters review other emerging battery technologies such as metal-air batteries and flow batteries. The final section of the book discuses design considerations and applications of batteries in remote locations and for grid-scale storage. Reviews advances in battery technologies and applications for medium and large-scale energy storage Examines battery types, including zing-based, lithium-air and vanadium redox flow batteries Analyses design issues and applications of these technologies

Rechargeable Lithium Batteries
Author : Alejandro Franco
Publisher : Elsevier
Release Date : 2015-04-07
ISBN 10 : 1782420983
Pages : 412 pages
GET BOOK!

Rechargeable Lithium Batteries: From Fundamentals to Application provides an overview of rechargeable lithium batteries, from fundamental materials, though characterization and modeling, to applications. The market share of lithium ion batteries is fast increasing due to their high energy density and low maintenance requirements. Lithium air batteries have the potential for even higher energy densities, a requirement for the development of electric vehicles, and other types of rechargeable lithium battery are also in development. After an introductory chapter providing an overview of the main scientific and technological challenges posed by rechargeable Li batteries, Part One of this book reviews materials and characterization of rechargeable lithium batteries. Part Two covers performance and applications, discussing essential aspects such as battery management, battery safety and emerging rechargeable lithium battery technologies as well as medical and aerospace applications. Expert overview of the main scientific and technological challenges posed by rechargeable lithium batteries Address the important topics of analysis, characterization, and modeling in rechargeable lithium batteries Key analysis of essential aspects such as battery management, battery safety, and emerging rechargeable lithium battery technologies

Advances in Battery Technologies for Electric Vehicles
Author : Bruno Scrosati,Jurgen Garche,Werner Tillmetz
Publisher : Woodhead Publishing
Release Date : 2015-05-25
ISBN 10 : 1782423982
Pages : 546 pages
GET BOOK!

Advances in Battery Technologies for Electric Vehicles provides an in-depth look into the research being conducted on the development of more efficient batteries capable of long distance travel. The text contains an introductory section on the market for battery and hybrid electric vehicles, then thoroughly presents the latest on lithium-ion battery technology. Readers will find sections on battery pack design and management, a discussion of the infrastructure required for the creation of a battery powered transport network, and coverage of the issues involved with end-of-life management for these types of batteries. Provides an in-depth look into new research on the development of more efficient, long distance travel batteries Contains an introductory section on the market for battery and hybrid electric vehicles Discusses battery pack design and management and the issues involved with end-of-life management for these types of batteries

Advanced Battery Materials
Author : Chunwen Sun
Publisher : John Wiley & Sons
Release Date : 2019-03-26
ISBN 10 : 1119407702
Pages : 400 pages
GET BOOK!

Electrochemical energy storage has played important roles in energy storage technologies for portable electronics and electric vehicle applications. During the past thirty years, great progress has been made in research and development of various batteries, in term of energy density increase and cost reduction. However, the energy density has to be further increased to achieve long endurance time. In this book, recent research and development in advanced electrode materials for electrochemical energy storage devices are presented, including lithium ion batteries, lithium-sulfur batteries and metal-air batteries, sodium ion batteries and supercapacitors. The materials involve transition metal oxides, sulfides, Si-based material as well as graphene and graphene composites.

Nanomaterials for Lithium-Ion Batteries
Author : Rachid Yazami
Publisher : CRC Press
Release Date : 2013-10-08
ISBN 10 : 9814364231
Pages : 462 pages
GET BOOK!

This book covers the most recent advances in the science and technology of nanostructured materials for lithium-ion application. With contributions from renowned scientists and technologists, the chapters discuss state-of-the-art research on nanostructured anode and cathode materials, some already used in commercial batteries and others still in development. They include nanostructured anode materials based on Si, Ge, Sn, and other metals and metal oxides together with cathode materials of olivine, the hexagonal and spinel crystal structures.

Battery Safety
Author : Daniel H. Doughty,Gerardine Botte,Christopher J. Orendorff
Publisher : The Electrochemical Society
Release Date : 2015-12-28
ISBN 10 : 1607686880
Pages : 329 pages
GET BOOK!

Nanotechnology for Lithium-Ion Batteries
Author : Yaser Abu-Lebdeh,Isobel Davidson
Publisher : Springer Science & Business Media
Release Date : 2012-10-17
ISBN 10 : 1461446058
Pages : 282 pages
GET BOOK!

This book combines two areas of intense interest: nanotechnology, and energy conversion and storage devices. In particular, Li-ion batteries have enjoyed conspicuous success in many consumer electronic devices and their projected use in vehicles that will revolutionize the way we travel in the near future. For many applications, Li-ion batteries are the battery of choice. This book consolidates the scattered developments in all areas of research related to nanotechnology and lithium ion batteries.