reliability of semiconductor lasers and optoelectronic devices

Download Reliability Of Semiconductor Lasers And Optoelectronic Devices ebooks in PDF, epub, tuebl, textbook from Skinvaders.Com. Read online Reliability Of Semiconductor Lasers And Optoelectronic Devices books on any device easily. We cannot guarantee that Reliability Of Semiconductor Lasers And Optoelectronic Devices book is available. Click download or Read Online button to get book, you can choose FREE Trial service. READ as many books as you like (Personal use).

Reliability of Semiconductor Lasers and Optoelectronic Devices
Author : Robert Herrick,Osamu Ueda
Publisher : Woodhead Publishing
Release Date : 2021-03-06
ISBN 10 : 0128192550
Pages : 334 pages
GET BOOK!

Reliability of Semiconductor Lasers and Optoelectronic Devices simplifies complex concepts of optoelectronics reliability with approachable introductory chapters and a focus on real-world applications. This book provides a brief look at the fundamentals of laser diodes, introduces reliability qualification, and then presents real-world case studies discussing the principles of reliability and what occurs when these rules are broken. Then this book comprehensively looks at optoelectronics devices and the defects that cause premature failure in them and how to control those defects. Key materials and devices are reviewed including silicon photonics, vertical-cavity surface-emitting lasers (VCSELs), InGaN LEDs and lasers, and AlGaN LEDs, covering the majority of optoelectronic devices that we use in our everyday lives, powering the Internet, telecommunication, solid-state lighting, illuminators, and many other applications. This book features contributions from experts in industry and academia working in these areas and includes numerous practical examples and case studies. This book is suitable for new entrants to the field of optoelectronics working in R&D. • Includes case studies and numerous examples showing best practices and common mistakes affecting optoelectronics reliability written by experts working in the industry • Features the first wide-ranging and comprehensive overview of fiber optics reliability engineering, covering all elements of the practice from building a reliability laboratory, qualifying new products, to improving reliability on mature products. • Provides a look at the reliability issues and failure mechanisms for silicon photonics, VCSELs, InGaN LEDs and lasers, AIGaN LEDs, and more.

Reliability and Degradation of Semiconductor Lasers and LEDs
Author : Mitsuo Fukuda
Publisher : Artech House on Demand
Release Date : 1991-01-01
ISBN 10 : 9780890064658
Pages : 343 pages
GET BOOK!

This comparative tutorial describes the reasons behind device failures and provides practical information on what can be done to minimize failure-prone designs and enhance device reliability. The text demonstrates how, with such advantages as smaller size, low-cost and simple operation, LEDs are well suited for a wide range of applications - especially in the field of optical fibre communication. This book should prove of interest to engineers and scientists in research, design, manufacturing and development of semiconductor lasers, LEDs and optical transmission systems.

Semiconductor Laser Engineering, Reliability and Diagnostics
Author : Peter W. Epperlein
Publisher : John Wiley & Sons
Release Date : 2013-03-18
ISBN 10 : 1119990335
Pages : 522 pages
GET BOOK!

This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors are discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performance- and reliability-impacting factors such as temperature, stress and material instabilities. Further key features include: practical design guidelines that consider also reliability related effects, key laser robustness factors, basic laser fabrication and packaging issues; detailed discussion of diagnostic investigations of diode lasers, the fundamentals of the applied approaches and techniques, many of them pioneered by the author to be fit-for-purpose and novel in the application; systematic insight into laser degradation modes such as catastrophic optical damage, and a wide range of technologies to increase the optical strength of diode lasers; coverage of basic concepts and techniques of laser reliability engineering with details on a standard commercial high power laser reliability test program. Semiconductor Laser Engineering, Reliability and Diagnostics reflects the extensive expertise of the author in the diode laser field both as a top scientific researcher as well as a key developer of high-power highly reliable devices. With invaluable practical advice, this new reference book is suited to practising researchers in diode laser technologies, and to postgraduate engineering students. Dr. Peter W. Epperlein is Technology Consultant with his own semiconductor technology consulting business Pwe-PhotonicsElectronics-IssueResolution in the UK. He looks back at a thirty years career in cutting edge photonics and electronics industries with focus on emerging technologies, both in global and start-up companies, including IBM, Hewlett-Packard, Agilent Technologies, Philips/NXP, Essient Photonics and IBM/JDSU Laser Enterprise. He holds Pre-Dipl. (B.Sc.), Dipl. Phys. (M.Sc.) and Dr. rer. nat. (Ph.D.) degrees in physics, magna cum laude, from the University of Stuttgart, Germany. Dr. Epperlein is an internationally recognized expert in compound semiconductor and diode laser technologies. He has accomplished R&D in many device areas such as semiconductor lasers, LEDs, optical modulators, quantum well devices, resonant tunneling devices, FETs, and superconducting tunnel junctions and integrated circuits. His pioneering work on sophisticated diagnostic research has led to many world’s first reports and has been adopted by other researchers in academia and industry. He authored more than seventy peer-reviewed journal papers, published more than ten invention disclosures in the IBM Technical Disclosure Bulletin, has served as reviewer of numerous proposals for publication in technical journals, and has won five IBM Research Division Awards. His key achievements include the design and fabrication of high-power, highly reliable, single mode diode lasers. Book Reviews “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Prof. em. Dr. Heinz Jäckel, High Speed Electronics and Photonics, Swiss Federal Institute of Technology ETH Zürich, Switzerland The book “Semiconductor Laser Engineering, Reliability and Diagnostics” by Dr. P.W. Epperlein is a landmark in the recent literature on semiconductor lasers because it fills a longstanding gap between many excellent books on laser theory and the complex and challenging endeavor to fabricate these devices reproducibly and reliably in an industrial, real world environment. Having worked myself in the early research and development of high power semiconductor lasers, I appreciate the competent, complete and skillful presentation of these three highly interrelated topics, where small effects have dramatic consequences on the success of a final product, on the ultimate performance and on the stringent reliability requirements, which are the name of the game. As the title suggests the author addresses three tightly interwoven and critical topics of state-of-the-art power laser research. The three parts are: device and mode stability engineering (chapter 1, 2), reliability mechanisms and reliability assessment strategies (chapter 3, 4, 5, 6) and finally material and device diagnostics (chapter 7, 8, 9) all treated with a strong focus on the implementation. This emphasis on the complex practical aspects for a large-scale power laser fabrication is a true highlight of the book. The subtle interplay between laser design, reliability strategies, advanced failure analysis and characterization techniques are elaborated in a very rigorous and scientific way using a very clear and easy to read representation of the complex interrelation of the three major topics. I will abstain from trying to provide a complete account of all the topics but mainly concentrate on the numerous highlights. The first part 1 “Laser Engineering” is divided in two chapters on basic electronic-optical, structural, material and resonator laser engineering on the one side, and on single mode control and stability at very high, still reliable power-levels with the trade-off between mirror damage, single mode stability on the other side. To round up the picture less well-known concepts and the state-of-the-art of large-area lasers, which can be forced into single-mode operation, are reviewed carefully. The subtle and complex interplay, which is challenging to optimize for a design for reliability and low stress as a major boundary condition is crucial for the design. The section gives a rather complete and well-referenced account of all relevant aspects, relations and trade-offs for understanding the rest of the book. The completeness of the presentation on power laser diode design based on basic physical and plausible arguments is mainly based on analytic mathematical relations as well as experiments providing a new and well-balanced addition for the power diode laser literature in particular. Modern 2D self-consistent electro-optical laser modeling including carrier hole burning and thermal effects – this is important because the weak optical guiding and gain-discrimination depend critically on rather small quantities and effects, which are difficult to optimize experimentally – is used in the book for simulation results, but is not treated separately. The novel and really original, “gap-filling” bulk of the book is elaborated by the author in a very clear way in the following four chapters in the part 2 “Laser Reliability” on laser degradation physics and mirror design and passivation at high power, followed then by two very application oriented chapters on reliability design engineering and practical reliability strategies and implementation procedures. This original combination of integral design and reliability aspects – which are mostly neglected in standard literature – is certainly a major plus of this book. I liked this second section as a whole, because it provides excellent insights in degradation physics on a high level and combines it in an interesting and skillful way with the less “glamorous” (unfortunately) but highly relevant reliability science and testing strategies, which is particularly important for devices operating at extreme optical stresses with challenging lifetime requirements in a real word environment. Finally, the last part 3 “Laser Diagnostics” comprising three chapters, is devoted mainly to advanced experimental diagnostics techniques for material integrity, mechanical stress, deep level defects, various dynamic laser degradation effects, surface- and interface quality, and most importantly heating and disordering of mirrors and mirror coatings. The topics of characterization techniques comprising micro-Raman- and micro-thermoreflectance-probing, 2K photoluminescence spectroscopy, micro-electroluminescence and photoluminescence scanning, and deep-level-transient spectroscopy have been pioneered by the author for the specific applications over many years guaranteeing many competent and well represented insights. These techniques are brilliantly discussed and the information distributed in many articles by the author has been successfully unified in a book form. In my personal judgment and liking, I consider the parts 2 and 3 on reliability and diagnostics as the most valuable and true novel contribution of the book, which in combination with the extremely well-covered laser design of part 1 clearly fill the gap in the current diode laser literature, which in this detail has certainly been neglected in the past. In summary, I can highly recommend this excellent, well-organized and clearly written book to readers who are already familiar with basic diode laser theory and who are active in the academic and industrial fabrication and characterization of semiconductor lasers. Due to its completeness, it also serves as an excellent reference of the current state-of-the-art in reliability engineering and device and material diagnostics. Needless to mention that the quality of the book, its representations and methodical structure meet the highest expectation and are certainly a tribute from the long and broad experience of the author in academic laser science and the industrial commercialization of high power diode lasers. In my opinion, this book was a pleasure to read and due to its quality and relevance deserves a large audience in the power diode laser community! Prof. em. Dr. Heinz Jäckel, High Speed Electronics and Photonics, Swiss Federal Institute of Technology ETH Zürich, Switzerland June 16, 2013 ========================================== “Semiconductor Laser Engineering, Reliability and Diagnostics:

Optical Semiconductor Devices
Author : Mitsuo Fukuda
Publisher : John Wiley & Sons
Release Date : 1998-12-24
ISBN 10 : 9780471149590
Pages : 440 pages
GET BOOK!

This book is devoted to optical semiconductor devices and their numerous applications in telecommunications, optoelectronics, and consumer electronics-areas where signal processing or the transmission of signals across fiber optic cables is paramount. It introduces a new generation of devices that includes optical modulators, quantum well (QW) lasers, and photodiodes and explores new applications of more established devices such as semiconductor lasers, light-emitting diodes, and photodiodes. Mitsuo Fukuda examines the material properties, operation principles, fabrication, packaging, reliability, and applications of each device and offers a unique industrial perspective, discussing everything engineers and scientists need to know at different phases of research, development, and production. This guide to the state-of-the-art of optical semiconductor devices: * Helps you choose the right device for a given application. * Covers important performance data such as temperature and optical feedback noise in lasers. * Highlights epitaxial growth techniques and fabrication for each device. * Features one hundred figures and an extensive bibliography. * Provides a clear and concise treatment, unencumbered by excessive theory Optical Semiconductor Devices is an essential resource for engineers and researchers in telecommunications and optoelectronics, equipment designers and manufacturers, and graduate students and scholars interested in this rapidly evolving field.

Reliability and Radiation Effects in Compound Semiconductors
Author : Allan Johnston
Publisher : World Scientific
Release Date : 2010
ISBN 10 : 9814277118
Pages : 376 pages
GET BOOK!

This book focuses on reliability and radiation effects in compound semiconductors, which have evolved rapidly during the last 15 years. It starts with first principles, and shows how advances in device design and manufacturing have suppressed many of the older reliability mechanisms. It is the first book that comprehensively covers reliability and radiation effects in optoelectronic as well as microelectronic devices. It contrasts reliability mechanisms of compound semiconductors with those of silicon-based devices, and shows that the reliability of many compound semiconductors has improved to the level where they can be used for ten years or more with low failure rates.

Semiconductor Optoelectronic Device Manufacturing and Applications
Author : David Chen,Society of Photo-optical Instrumentation Engineers
Publisher : Society of Photo Optical
Release Date : 2001
ISBN 10 :
Pages : 352 pages
GET BOOK!

Semiconductor Device Reliability
Author : A. Christou,B.A. Unger
Publisher : Springer Science & Business Media
Release Date : 2012-12-06
ISBN 10 : 9400924828
Pages : 575 pages
GET BOOK!

This publication is a compilation of papers presented at the Semiconductor Device Reliabi lity Workshop sponsored by the NATO International Scientific Exchange Program. The Workshop was held in Crete, Greece from June 4 to June 9, 1989. The objective of the Workshop was to review and to further explore advances in the field of semiconductor reliability through invited paper presentations and discussions. The technical emphasis was on quality assurance and reliability of optoelectronic and high speed semiconductor devices. The primary support for the meeting was provided by the Scientific Affairs Division of NATO. We are indebted to NATO for their support and to Dr. Craig Sinclair, who admin isters this program. The chapters of this book follow the format and order of the sessions of the meeting. Thirty-six papers were presented and discussed during the five-day Workshop. In addi tion, two panel sessions were held, with audience participation, where the particularly controversial topics of bum-in and reliability modeling and prediction methods were dis cussed. A brief review of these sessions is presented in this book.

Fabrication, Testing, and Reliability of Semiconductor Lasers
Author : N.A
Publisher : N.A
Release Date : 1997
ISBN 10 :
Pages : 329 pages
GET BOOK!

Scientific and Technical Aerospace Reports
Author : N.A
Publisher : N.A
Release Date : 1984
ISBN 10 :
Pages : 329 pages
GET BOOK!

Packaging of High Power Semiconductor Lasers
Author : Xingsheng Liu,Wei Zhao,Lingling Xiong,Hui Liu
Publisher : Springer
Release Date : 2014-07-14
ISBN 10 : 1461492637
Pages : 402 pages
GET BOOK!

This book introduces high power semiconductor laser packaging design. The challenges of the design and various packaging and testing techniques are detailed by the authors. New technologies and current applications are described in detail.

Materials and Reliability Handbook for Semiconductor Optical and Electron Devices
Author : Osamu Ueda,Stephen J. Pearton
Publisher : Springer Science & Business Media
Release Date : 2012-09-22
ISBN 10 : 1461443377
Pages : 616 pages
GET BOOK!

Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The Handbook addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and reliability, which allow accurate prediction of reliability as well as the design specifically for improved reliability. The Handbook emphasizes physical mechanisms rather than an electrical definition of reliability. Accelerated aging is useful only if the failure mechanism is known. The Handbook also focuses on voltage and current acceleration stress mechanisms.

Nitride Semiconductor Technology
Author : Fabrizio Roccaforte,Michael Leszczynski
Publisher : John Wiley & Sons
Release Date : 2020-07-30
ISBN 10 : 3527825274
Pages : 464 pages
GET BOOK!

Groundbreaking book that combines information on power electronics and optoelectronic applications of nitride semiconductors With contributions from a panel of international experts, Nitride Semiconductor Technology: Power Electronics and Optoelectronic Devices offers a state-of-the-art review of GaN-based technologies that covers the fields of both power electronics and optoelectronic devices. The authors present detailed explanations of the physical properties of materials and their growth methods. They also include information on GaN-based technology applications in high electron mobility transistors, vertical power devices, LEDs, laser diodes, and vertical-cavity surface-emitting lasers. Nitride Semiconductor Technology contains an in-depth examination of reliability issues with the materials and offers advice on integrating them with 2D materials for novel high-frequency and high-power devices. The book also contains a review of the most recent advances in the field. This important book: Presents an in-depth overview of properties, growth techniques, and applicability of nitride semiconductors Offers a one-stop resource that covers nitride semiconductor technology from materials to devices Reviews a widerange of nitride semiconductor applications in high-power and high-frequency devices Written for materials scientists, semiconductor physicists, semiconductor industry professionals, electrical engineers, and electrotechnical industry professionals, Nitride Semiconductor Technology: Power Electronics and Optoelectronic Devices combines the most recent information on power electronics and optoelectronic applications of nitride semiconductors.