physics of nuclear reactors

Download Physics Of Nuclear Reactors ebooks in PDF, epub, tuebl, textbook from Skinvaders.Com. Read online Physics Of Nuclear Reactors books on any device easily. We cannot guarantee that Physics Of Nuclear Reactors book is available. Click download or Read Online button to get book, you can choose FREE Trial service. READ as many books as you like (Personal use).

Physics of Nuclear Reactors
Author : P. Mohanakrishnan,Om Pal Singh,Umasankari Kannan
Publisher : Academic Press
Release Date : 2021-04-01
ISBN 10 : 0128224428
Pages : 550 pages
GET BOOK!

Physics of Nuclear Reactors presents a comprehensive analysis of nuclear reactor physics. Editors Rao, Singh, Kannan, and a team of expert contributors combine their knowledge to guide the reader through a toolkit of methods for solving transport equations, understanding the physics of reactor design principles, and developing reactor safety strategies. The inclusion of experimental and operational reactor physics makes this a unique reference for those working and researching nuclear power and the fuel cycle in existing power generation sites and experimental facilities. The book also includes radiation physics, shielding techniques and an analysis of shield design, neutron monitoring and core operations. Those involved in the development and operation of nuclear reactors and the fuel cycle will gain a thorough understanding of all elements of nuclear reactor physics, thus enabling them to apply the analysis and solution methods provided to their own work and research. This book looks to future reactors in development and analyzes their status and challenges before providing possible worked-through solutions. Includes methods for solving neutron transport problems, nuclear cross-section data and solutions of transport theory Dedicates a chapter to reactor safety that covers mitigation, probabilistic safety assessment and uncertainty analysis Covers experimental and operational physics with details on noise analysis and failed fuel detection

The Physics of Nuclear Reactors
Author : Serge Marguet
Publisher : Springer
Release Date : 2018-02-26
ISBN 10 : 3319595601
Pages : 1445 pages
GET BOOK!

This comprehensive volume offers readers a progressive and highly detailed introduction to the complex behavior of neutrons in general, and in the context of nuclear power generation. A compendium and handbook for nuclear engineers, a source of teaching material for academic lecturers as well as a graduate text for advanced students and other non-experts wishing to enter this field, it is based on the author’s teaching and research experience and his recognized expertise in nuclear safety. After recapping a number of points in nuclear physics, placing the theoretical notions in their historical context, the book successively reveals the latest quantitative theories concerning: • The slowing-down of neutrons in matter • The charged particles and electromagnetic rays • The calculation scheme, especially the simplification hypothesis • The concept of criticality based on chain reactions • The theory of homogeneous and heterogeneous reactors • The problem of self-shielding • The theory of the nuclear reflector, a subject largely ignored in literature • The computational methods in transport and diffusion theories Complemented by more than 400 bibliographical references, some of which are commented and annotated, and augmented by an appendix on the history of reactor physics at EDF (Electricité De France), this book is the most comprehensive and up-to-date introduction to and reference resource in neutronics and reactor theory.

Nuclear Reactor Physics and Engineering
Author : John C. Lee
Publisher : John Wiley & Sons
Release Date : 2020-03-17
ISBN 10 : 1119582326
Pages : 656 pages
GET BOOK!

An introductory text for broad areas of nuclear reactor physics Nuclear Reactor Physics and Engineering offers information on analysis, design, control, and operation of nuclear reactors. The author—a noted expert on the topic—explores the fundamentals and presents the mathematical formulations that are grounded in differential equations and linear algebra. The book puts the focus on the use of neutron diffusion theory for the development of techniques for lattice physics and global reactor system analysis. The author also includes recent developments in numerical algorithms, including the Krylov subspace method, and the MATLAB software, including the Simulink toolbox, for efficient studies of steady-state and transient reactor configurations. In addition, nuclear fuel cycle and associated economics analysis are presented, together with the application of modern control theory to reactor operation. This important book: Provides a comprehensive introduction to the fundamental concepts of nuclear reactor physics and engineering Contains information on nuclear reactor kinetics and reactor design analysis Presents illustrative examples to enhance understanding Offers self-contained derivation of fluid conservation equations Written for undergraduate and graduate students in nuclear engineering and practicing engineers, Nuclear Reactor Physics and Engineering covers the fundamental concepts and tools of nuclear reactor physics and analysis.

Fundamentals of Nuclear Reactor Physics
Author : Elmer E. Lewis
Publisher : Elsevier
Release Date : 2008-01-18
ISBN 10 : 9780080560434
Pages : 280 pages
GET BOOK!

Fundamentals of Nuclear Reactor Physics offers a one-semester treatment of the essentials of how the fission nuclear reactor works, the various approaches to the design of reactors, and their safe and efficient operation . It provides a clear, general overview of atomic physics from the standpoint of reactor functionality and design, including the sequence of fission reactions and their energy release. It provides in-depth discussion of neutron reactions, including neutron kinetics and the neutron energy spectrum, as well as neutron spatial distribution. It includes ample worked-out examples and over 100 end-of-chapter problems. Engineering students will find this applications-oriented approach, with many worked-out examples, more accessible and more meaningful as they aspire to become future nuclear engineers. A clear, general overview of atomic physics from the standpoint of reactor functionality and design, including the sequence of fission reactions and their energy release In-depth discussion of neutron reactions, including neutron kinetics and the neutron energy spectrum, as well as neutron spatial distribution Ample worked-out examples and over 100 end-of-chapter problems Full Solutions Manual

Modelling of Nuclear Reactor Multi-physics
Author : Christophe Demazière
Publisher : Academic Press
Release Date : 2019-11-19
ISBN 10 : 012815070X
Pages : 368 pages
GET BOOK!

Modelling of Nuclear Reactor Multiphysics: From Local Balance Equations to Macroscopic Models in Neutronics and Thermal-Hydraulics is an accessible guide to the advanced methods used to model nuclear reactor systems. The book addresses the frontier discipline of neutronic/thermal-hydraulic modelling of nuclear reactor cores, presenting the main techniques in a generic manner and for practical reactor calculations. The modelling of nuclear reactor systems is one of the most challenging tasks in complex system modelling, due to the many different scales and intertwined physical phenomena involved. The nuclear industry as well as the research institutes and universities heavily rely on the use of complex numerical codes. All the commercial codes are based on using different numerical tools for resolving the various physical fields, and to some extent the different scales, whereas the latest research platforms attempt to adopt a more integrated approach in resolving multiple scales and fields of physics. The book presents the main algorithms used in such codes for neutronic and thermal-hydraulic modelling, providing the details of the underlying methods, together with their assumptions and limitations. Because of the rapidly expanding use of coupled calculations for performing safety analyses, the analysists should be equally knowledgeable in all fields (i.e. neutron transport, fluid dynamics, heat transfer). The first chapter introduces the book’s subject matter and explains how to use its digital resources and interactive features. The following chapter derives the governing equations for neutron transport, fluid transport, and heat transfer, so that readers not familiar with any of these fields can comprehend the book without difficulty. The book thereafter examines the peculiarities of nuclear reactor systems and provides an overview of the relevant modelling strategies. Computational methods for neutron transport, first at the cell and assembly levels, then at the core level, and for one-/two-phase flow transport and heat transfer are treated in depth in respective chapters. The coupling between neutron transport solvers and thermal-hydraulic solvers for coarse mesh macroscopic models is given particular attention in a dedicated chapter. The final chapter summarizes the main techniques presented in the book and their interrelation, then explores beyond state-of-the-art modelling techniques relying on more integrated approaches. Covers neutron transport, fluid dynamics, and heat transfer, and their interdependence, in one reference Analyses the emerging area of multi-physics and multi-scale reactor modelling Contains 71 short videos explaining the key concepts and 77 interactive quizzes allowing the readers to test their understanding

Nuclear Reactor Physics
Author : Weston M. Stacey
Publisher : John Wiley & Sons
Release Date : 2018-06-05
ISBN 10 : 3527413669
Pages : 766 pages
GET BOOK!

The third, revised edition of this popular textbook and reference, which has been translated into Russian and Chinese, expands the comprehensive and balanced coverage of nuclear reactor physics to include recent advances in understanding of this topic. The first part of the book covers basic reactor physics, including, but not limited to nuclear reaction data, neutron diffusion theory, reactor criticality and dynamics, neutron energy distribution, fuel burnup, reactor types and reactor safety. The second part then deals with such physically and mathematically more advanced topics as neutron transport theory, neutron slowing down, resonance absorption, neutron thermalization, perturbation and variational methods, homogenization, nodal and synthesis methods, and space-time neutron dynamics. For ease of reference, the detailed appendices contain nuclear data, useful mathematical formulas, an overview of special functions as well as introductions to matrix algebra and Laplace transforms. With its focus on conveying the in-depth knowledge needed by advanced student and professional nuclear engineers, this text is ideal for use in numerous courses and for self-study by professionals in basic nuclear reactor physics, advanced nuclear reactor physics, neutron transport theory, nuclear reactor dynamics and stability, nuclear reactor fuel cycle physics and other important topics in the field of nuclear reactor physics.

Introduction to Nuclear Reactor Physics
Author : Robert E. Masterson
Publisher : CRC Press
Release Date : 2017-11-22
ISBN 10 : 1498751504
Pages : 1079 pages
GET BOOK!

INTRODUCTION TO NUCLEAR REACTOR PHYSICS is the most comprehensive, modern and readable textbook for this course/module. It explains reactors, fuel cycles, radioisotopes, radioactive materials, design, and operation. Chain reaction and fission reactor concepts are presented, plus advanced coverage including neutron diffusion theory. The diffusion equation, Fisk’s Law, and steady state/time-dependent reactor behavior. Numerical and analytical solutions are also covered. The text has full color illustrations throughout, and a wide range of student learning features.

Neutron Physics for Nuclear Reactors
Author : Enrico Fermi,Salvatore Esposito,Ofelia Pisanti
Publisher : World Scientific
Release Date : 2010
ISBN 10 : 9814291226
Pages : 665 pages
GET BOOK!

This unique volume gives an accurate and very detailed description of the functioning and operation of basic nuclear reactors, as emerging from yet unpublished papers by Nobel Laureate Enrico Fermi. In the first part, the entire course of lectures on Neutron Physics delivered by Fermi at Los Alamos is reported, according to the version made by Anthony P French. Here, the fundamental physical phenomena are described very clearly and comprehensively, giving the appropriate physics grounds for the functioning of nuclear piles. In the second part, all the patents issued by Fermi (and coworkers) on the functioning, construction and operation of several different kinds of nuclear reactors are reported. Here, the main engineering problems are encountered and solved by employing simple and practical methods, which are described in detail. This seminal work mainly caters to students, teachers and researchers working in nuclear physics and engineering, but it is of invaluable interest to historians of physics too, since the material presented here is entirely novel.

Physics and Technology of Nuclear Materials
Author : Ioan Ursu
Publisher : Elsevier
Release Date : 2015-08-03
ISBN 10 : 1483150577
Pages : 540 pages
GET BOOK!

Physics and Technology of Nuclear Materials presents basic information regarding the structure, properties, processing methods, and response to irradiation of the key materials that fission and fusion nuclear reactors have to rely upon. Organized into 12 chapters, this book begins with selectively several fundamentals of nuclear physics. Subsequent chapters focus on the nuclear materials science; nuclear fuel; structural materials; moderator materials employed to ""slow down"" fission neutrons; and neutron highly absorbent materials that serve in reactor's power control. Other chapters explore the cooling agents; fluids carrying the energy to its final stage of conversion into electric power; thermal and biological shielding materials; some outstanding reactor components; and irradiated fuel reprocessing. The last two chapters deal with nuclear material quality inspection by destructive and non-destructive methods, and specific materials envisaged for use in future thermonuclear reactors. This monograph will be helpful for a wide range of specialists wishing to gear their research and development, education, and other activities toward the field of nuclear power and nuclear technology.

Physics of High-Temperature Reactors
Author : Luigi Massimo
Publisher : Elsevier
Release Date : 2013-10-22
ISBN 10 : 1483280284
Pages : 224 pages
GET BOOK!

Physics of High-Temperature Reactors focuses on the physics of high-temperature reactors (HTRs) and covers topics ranging from fuel cycles and refueling strategies to neutron cross-sections, transport and diffusion theory, and resonance absorption. Spectrum calculations and cross-section averaging are also discussed, along with the temperature coefficient and reactor control. Comprised of 16 chapters, this book begins with a general description of the HTR core as well as its performance limitations. The next chapter deals with general considerations about HTR physics, including quantities to be determined and optimized in the design of nuclear reactors. Potential scattering and resonance reactions between neutrons and atomic nuclei are then considered, together with basic aspects of transport and diffusion theory. Subsequent chapters explore methods for solving the diffusion equation; slowing-down and neutron thermalization in graphite; HTR core design, fuel management, and cost calculations; and core dynamics and accident analysis. The final chapter describes the sequence of reactor design calculations. This monograph is written primarily for students of HTR physics who are preparing to enter the field as well as technologists of other disciplines who are working on the system.

Nuclear Energy
Author : David Bodansky
Publisher : Springer Science & Business Media
Release Date : 2007-06-25
ISBN 10 : 9780387269313
Pages : 694 pages
GET BOOK!

This second edition represents an extensive revision of the ?rst edition, - though the motivation for the book and the intended audiences, as described inthepreviouspreface,remainthesame. Theoveralllengthhasbeenincreased substantially, with revised or expanded discussions of a number of topics, - cluding Yucca Mountain repository plans, new reactor designs, health e?ects of radiation, costs of electricity, and dangers from terrorism and weapons p- liferation. The overall status of nuclear power has changed rather little over the past eight years. Nuclear reactor construction remains at a very low ebb in much of the world, with the exception of Asia, while nuclear power’s share of the electricity supply continues to be about 75% in France and 20% in the United States. However,therearesignsofaheightenedinterestinconsideringpossible nuclear growth. In the late 1990s, the U. S. Department of Energy began new programs to stimulate research and planning for future reactors, and many candidate designs are now contending—at least on paper—to be the next generation leaders. Outside the United States, the commercial development ofthePebbleBedModularReactorisbeingpursuedinSouthAfrica,aFrench- German consortium has won an order from Finlandfor the long-plannedEPR (European Pressurized Water Reactor), and new reactors have been built or planned in Asia. In an unanticipated positive development for nuclear energy, the capacity factor of U. S. reactors has increased dramatically in recent years, and most operating reactors now appear headed for 20-year license renewals.

Energy from Nuclear Fission
Author : Enzo De Sanctis,Stefano Monti,Marco Ripani
Publisher : Springer
Release Date : 2016-06-18
ISBN 10 : 3319306510
Pages : 278 pages
GET BOOK!

This book provides an overview on nuclear physics and energy production from nuclear fission. It serves as a readable and reliable source of information for anyone who wants to have a well-balanced opinion about exploitation of nuclear fission in power plants. The text is divided into two parts; the first covers the basics of nuclear forces and properties of nuclei, nuclear collisions, nuclear stability, radioactivity, and provides a detailed discussion of nuclear fission and relevant topics in its application to energy production. The second part covers the basic technical aspects of nuclear fission reactors, nuclear fuel cycle and resources, safety, safeguards, and radioactive waste management. The book also contains a discussion of the biological effects of nuclear radiation and of radiation protection, and a summary of the ten most relevant nuclear accidents. The book is suitable for undergraduates in physics, nuclear engineering and other science subjects. However, the mathematics is kept at a level that can be easily followed by wider circles of readers. The addition of solved problems, strategically placed throughout the text, and the collections of problems at the end of the chapters allow readers to appreciate the quantitative aspects of various phenomena and processes. Many illustrations and graphs effectively supplement the text and help visualising specific points.