nanostructured functional and flexible materials for energy conversion and storage systems

Download Nanostructured Functional And Flexible Materials For Energy Conversion And Storage Systems ebooks in PDF, epub, tuebl, textbook from Skinvaders.Com. Read online Nanostructured Functional And Flexible Materials For Energy Conversion And Storage Systems books on any device easily. We cannot guarantee that Nanostructured Functional And Flexible Materials For Energy Conversion And Storage Systems book is available. Click download or Read Online button to get book, you can choose FREE Trial service. READ as many books as you like (Personal use).

Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems
Author : Alagarsamy Pandikumar,Perumal Rameshkumar
Publisher : Elsevier
Release Date : 2020-05-12
ISBN 10 : 0128227699
Pages : 542 pages

Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems gathers and reviews developments within the field of nanostructured functional materials towards energy conversion and storage. Contributions from leading research groups involved in interdisciplinary research in the fields of chemistry, physics and materials science and engineering are presented. Chapters dealing with the development of nanostructured materials for energy conversion processes, including oxygen reduction, methanol oxidation, oxygen evolution, hydrogen evolution, formic acid oxidation and solar cells are discussed. The work concludes with a look at the application of nanostructured functional materials in energy storage system, such as supercapacitors and batteries. With its distinguished international team of expert contributors, this book will be an indispensable tool for anyone involved in the field of energy conversion and storage, including materials engineers, scientists and academics. Covers the importance of energy conversion and storage systems and the application of nanostructured functional materials toward energy-relevant catalytic processes Discusses the basic principles involved in energy conversion and storage systems Presents the role of nanostructured functional materials in the current scenario of energy-related research and development

Functional Electrodes For Enzymatic And Microbial Electrochemical Systems
Author : Brun Nicolas,Flexer Victoria
Publisher : World Scientific
Release Date : 2017-10-27
ISBN 10 : 178634355X
Pages : 660 pages

Bioelectrochemical Systems (BESs) are innovative and sustainable devices. They combine biological and electrochemical processes to engineer sensors, treat wastewater and/or produce electricity, fuel or high-value chemicals. In BESs, scientists have managed to incorporate biological catalysts, i.e. enzymes and/or microorganisms, and make them work in advanced electrochemical cells. BESs operate under mild conditions — at close to ambient temperature and pressure and at circumneutral pH — and represent a sustainable alternative to precious metal-based systems. Incorporating biological catalysts into devices while maintaining their activity and achieving electrical communication with electrode surfaces is a critical challenge when trying to advance the field of BESs. From implantable enzymatic biosensors to microbial electrosynthesis, and from laboratory-scale systems and fundamental studies to marketed devices, this book provides a comprehensive overview of recent advances related to functional electrodes for BESs. Suitable for researchers and graduate students of chemistry, biochemistry, materials science and environmental science and technology. Contents: Fundamentals: Fundamentals of Enzymatic Electrochemical Systems (Victoria Flexer and Nicolas Brun)Fundamentals of Microbial Electrochemical Systems (Stefano Freguia, Kun Guo, and Pablo Ledezma)Continuum in Enzymatic and Microbial Bioelectrocatalysis (Frédéric Barrière)Electron Transfer Between Bacteria and Electrodes (Lucie Semenec, Sanja Aracic, Elizabeth R Mathews, and Ashley E Franks)Electrodes for Enzymatic Electrochemical Systems: Architectures of Enzyme Electrodes Using Redox Mediators (Victoria Flexer, Antonin Prévoteau, and Nicolas Brun)Functional Electrodes for Enzymatic Electrosynthesis (Lin Zhang, Mathieu Etienne, Neus Vilà, and Alain Walcarius)Redox Hydrogels as an Efficient Strategy for Immobilization of Enzymes at Electrode Interfaces (Joshua W Gallaway, and Scott Calabrese Barton)Conducting Polymer Hydrogels and Their Applications as Electrode Materials (Yu Zhao, Lanlan Li, Lijia Pan, Guihua Yu, and Yi Shi)Nanocarbon-Based Enzymatic Electrodes (Nicolas Brun, Mohammed Baccour, and Victoria Flexer)Carbonaceous Electrodes Featuring Tunable Mesopores for Use as Enzyme Electrodes (Seiya Tsujimura)Electrodes for Microbial Electrochemical Systems: Materials and Their Surface Modification for Use as Anode in Microbial Bioelectrochemical Systems (Kun Guo, Antonin Prévoteau, Sunil A Patil, and Korneel Rabaey)Electrodes for Cathodic Microbial Electrosynthesis Processes: Key-Developments and Criteria for Effective Research and Implementation (Ludovic Jourdin and David Strik)Non-Carbonaceous Electrodes for Microbial Electrochemical Systems (Hernán Romeo, Diego Massazza, Rodrigo Parra, and Juan Pablo Busalmen)Imaging and Characterization of Bioelectrodes: Imaging and Characterization of Microbial Electrodes (Yang Lu and Bogdan C Donose)Spectroscopic Methods for Characterizing Redox Chemistry at Metalloprotein-Modified Electrodes (Philip A Ash and Kylie A Vincent)Spectroelectrochemistry of Microbial Biofilms (Diego Millo and Bernardino Virdis)Scanning Electrochemical Microscopy: A New Tool for Studying Enzymatic Reactions (Dodzi Zigah and Olivier Fontaine) Readership: Suitable for researchers, postgraduate and graduate students of chemistry, biochemistry and environmental sci

Emerging Materials for Energy Conversion and Storage
Author : Kuan Yew Cheong,Giuliana Impellizzeri,Mariana Amorim Fraga
Publisher : Elsevier
Release Date : 2018-08-09
ISBN 10 : 0128137959
Pages : 488 pages

Emerging Materials for Energy Conversion and Storage presents the state-of-art of emerging materials for energy conversion technologies (solar cells and fuel cells) and energy storage technologies (batteries, supercapacitors and hydrogen storage). The book is organized into five primary sections, each with three chapters authored by worldwide experts in the fields of materials science, physics, chemistry and engineering. It covers the fundamentals, functionalities, challenges and prospects of different classes of emerging materials, such as wide bandgap semiconductors, oxides, carbon-based nanostructures, advanced ceramics, chalcogenide nanostructures, and flexible organic electronics nanomaterials. The book is an important reference for students and researchers (from academics, but also industry) interested in understanding the properties of emerging materials. Explores the fundamentals, challenges and prospects for the application of emerging materials in the development of energy conversion and storage devices Presents a discussion of solar cell and photovoltaic, fuel cell, battery electrode, supercapacitor and hydrogen storage applications Includes notable examples of energy devices based on emerging materials to illustrate recent advances in this field

Nanostructured Materials for Energy Related Applications
Author : Saravanan Rajendran,Mu. Naushad,Subramanian Balakumar
Publisher : Springer
Release Date : 2019-02-11
ISBN 10 : 3030045005
Pages : 297 pages

This book describes the role and fundamental aspects of the diverse ranges of nanostructured materials for energy applications in a comprehensive manner. Advanced nanomaterial is an important and interdisciplinary field which includes science and technology. This work thus gives the reader an in depth analysis focussed on particular nanomaterials and systems applicable for technologies such as clean fuel, hydrogen generation, absorption and storage, supercapacitors, battery applications and more. Furthermore, it not only aims to exploit certain nanomaterials for technology transfer, but also exploits a wide knowledge on avenues such as biomass-derived nanomaterials, carbon dioxide conversions into renewable fuel chemicals using nanomaterials. These are the areas with lacunae that demand more research and application.

Comprehensive Energy Systems
Author : N.A
Publisher : Elsevier
Release Date : 2018-02-07
ISBN 10 : 0128149256
Pages : 5540 pages

Comprehensive Energy Systems provides a unified source of information covering the entire spectrum of energy, one of the most significant issues humanity has to face. This comprehensive book describes traditional and novel energy systems, from single generation to multi-generation, also covering theory and applications. In addition, it also presents high-level coverage on energy policies, strategies, environmental impacts and sustainable development. No other published work covers such breadth of topics in similar depth. High-level sections include Energy Fundamentals, Energy Materials, Energy Production, Energy Conversion, and Energy Management. Offers the most comprehensive resource available on the topic of energy systems Presents an authoritative resource authored and edited by leading experts in the field Consolidates information currently scattered in publications from different research fields (engineering as well as physics, chemistry, environmental sciences and economics), thus ensuring a common standard and language

Nanomaterials For Energy Conversion And Storage
Author : Wang Dunwei,Cao Guozhong
Publisher : World Scientific
Release Date : 2017-11-10
ISBN 10 : 1786343649
Pages : 836 pages

The use of nanomaterials in energy conversion and storage represents an opportunity to improve the performance, density and ease of transportation in renewable resources. This book looks at the most recent research on the topic, with particular focus on artificial photosynthesis and lithium-ion batteries as the most promising technologies to date. Research on the broad subject of energy conversion and storage calls for expertise from a wide range of backgrounds, from the most fundamental perspectives of the key catalytic processes at the molecular level to device scale engineering and optimization. Although the nature of the processes dictates that electrochemistry is a primary characterization tool, due attention is given to advanced techniques such as synchrotron studies in operando. These studies look at the gap between the performance of current technology and what is needed for the future, for example how to improve on the lithium-ion battery and to go beyond its capabilities. Suitable for students and practitioners in the chemical, electrochemical, and environmental sciences, Nanomaterials for Energy Conversion and Storage provides the information needed to find scalable, economically viable and safe solutions for sustainable energy. Contents: The Principle of Photoelectrochemical Water Splitting (Peiyan Ma and Dunwei Wang)Semiconducting Photocatalysis for Solar Hydrogen Conversion (Shaohua Shen and Jie Chen)Visible-Light-Driven Photocatalysis (Qingzhe Zhang, Yanlong Liu, Zhenhe Xu, Yue Zhao, Mohamed Chaker and Dongling Ma)Metal-Nitride Nanostructures: Emerging Catalysts for Artificial Photosynthesis (Md Golam Kibria, Bandar AlOtaibi and Zetian Mi)Surface Engineering of Semiconductors for Photoelectrochemical Water Splitting (Gongming Wang, Yi Yang and Yat Li)Photoanodic and Photocathodic Materials Applied for Free-Running Solar Water Splitting Devices (Miao Zhong, Hiroyuki Kaneko, Taro Yamada and Kazunari Domen)Electrocatalytic Processes in Energy Technologies (Yang Huang, Min Zeng, Qiufang Gong and Yanguang Li)Soft X-Ray Spectroscopy on Photocatalysis (Yi-Sheng Liu, Cheng-Hao Chuang and Jinghua Guo)Photoelectrochemical Tools for the Assessment of Energy Conversion Devices (Isaac Herraiz-Cardona and Sixto Gimenez)Fundamentals of Rechargable Batteries and Electrochemical Potentials of Electrode Materials (Chaofeng Liu and Guozhong Cao)Revitalized Interest in Vanadium Pentoxide as Cathode Material for Alkali-Ion Batteries (Yanwei Li, Jinhuan Yao, Robert C Massé, Evan Uchaker and Guozhong Cao)Tin-Based Compounds as Anode Materials for Lithium-Ion Storage (Ming Zhang and Guozhong Cao)Beyond Li-Ion: Electrode Materials for Sodium- and Magnesium-Ion Batteries (Robert Massé, Evan Uchaker and Guozhong Cao)Nanomaterials and Nanostructures for Regulating Ions and Electron Transport in Advanced Energy Storage Devices (Yu Wang and Wei-Hong Zhong) Readership: Students, researchers and practitioners in the chemical, electrochemical, and environmental sciences. Keywords: Nanomaterials;Lithium-Ion Batteries;Electrochemistry;Energy Conversion;Energy Storage;Artificial PhotosynthesisReview:0

Nanostructured Materials for Next-Generation Energy Storage and Conversion
Author : Tulay Aygan Atesin,Sajid Bashir,Jingbo Louise Liu
Publisher : Springer Nature
Release Date : 2019-11-15
ISBN 10 : 366259594X
Pages : 501 pages

Nanostructured Materials for Next-Generation Energy Storage and Conversion: Photovoltaic and Solar Energy, is volume 4 of a 4-volume series on sustainable energy. Photovoltaic and Solar Energy while being a comprehensive reference work, is written with minimal jargon related to various aspects of solar energy and energy policies. It is authored by leading experts in the field, and lays out theory, practice, and simulation studies related to solar energy and allied applications including policy, economic and technological challenges. Topics covered include: introduction to solar energy, fundamentals of solar radiation, heat transfer, thermal collection and conversion, solar economy, heating, cooling, dehumidification systems, power and process heat, solar power conversion, policy and applications pertinent to solar energy as viable alternatives to fossil fuels. The aim of the book is to present all the information necessary for the design and analysis of solar energy systems for engineers, material scientists, economics, policy analysts, graduate students, senior undergraduates, solar energy practitioner, as well as policy or lawmakers in the field of energy policy, international energy trade, and libraries which house technical handbooks related to energy, energy policy and applications.

Electrochemical Energy Conversion and Storage Systems for Future Sustainability
Author : Aneeya Kumar Samantara,Satyajit Ratha
Publisher : CRC Press
Release Date : 2020-11-17
ISBN 10 : 1000764176
Pages : 326 pages

This new volume discusses new and well-known electrochemical energy harvesting, conversion, and storage techniques. It provides significant insight into the current progress being made in this field and suggests plausible solutions to the future energy crisis along with approaches to mitigate environmental degradation caused by energy generation, production, and storage. Topics in Electrochemical Energy Conversion and Storage Systems for Future Sustainability: Technological Advancements address photoelectrochemical catalysis by ZnO, hydrogen oxidation reaction for fuel cell application, and miniaturized energy storage devices in the form of micro-supercapacitors. The volume looks at the underlying mechanisms and acquired first-hand information on how to overcome some of the critical bottlenecks to achieve long-term and reliable energy solutions. The detailed synthesis processes that have been tried and tested over time through rigorous attempts of many researchers can help in selecting the most effective and economical ways to achieve maximum output and efficiency, without going through time-consuming and complex steps. The theoretical analyses and computational results corroborate the experimental findings for better and reliable energy solutions.

Functional Materials
Author : Mario Leclerc,Robert Gauvin
Publisher : Walter de Gruyter GmbH & Co KG
Release Date : 2014-10-10
ISBN 10 : 3110307820
Pages : 493 pages

"Functional Materials textbook is not simply a review of the vast body of literature of the recent years, as it holds the focus upon various aspects of application. Moreover, it selects only a few topics in favor of a solid and thorough treatment of the relevant aspects. This book comes in a good time, when a large body of academic literature has been accumulated and is waiting for a critical inspection in the light of the real demands of application." Professor Gerhard Wegner, Max-Planck Institute for Polymer Research, Mainz, Germany The chapters cover three important fields in the development of functional materials: energy, environment, and biomedical applications. These topics are explained and discussed from both an experimental and a theoretical perspective. Functional organic and inorganic materials are at the center of most technological breakthroughs. Therefore, the understanding of material properties is fundamental to the development of novel functionalities and applications.

Nanostructured Materials for Next-Generation Energy Storage and Conversion
Author : Qiang Zhen,Sajid Bashir,Jingbo Louise Liu
Publisher : Springer Nature
Release Date : 2019-10-10
ISBN 10 : 3662586754
Pages : 472 pages

Volume 3 of a 4-volume series is a concise, authoritative and an eminently readable and enjoyable experience related to lithium ion battery design, characterization and usage for portable and stationary power. Although the major focus is on lithium metal oxides or transition metal oxide as alloys, the discussion of fossil fuels is also presented where appropriate. This monograph is written by recognized experts in the field, and is both timely and appropriate as this decade will see application of lithium as an energy carrier, for example in the transportation sector. This Volume focuses on the fundamentals related to batteries using the latest research in the field of battery physics, chemistry, and electrochemistry. The research summarised in this book by leading experts is laid out in an easy-to-understand format to enable the layperson to grasp the essence of the technology, its pitfalls and current challenges in high-power Lithium battery research. After introductory remarks on policy and battery safety, a series of monographs are offered related to fundamentals of lithium batteries, including, theoretical modeling, simulation and experimental techniques used to characterize electrode materials, both at the material composition, and also at the device level. The different properties specific to each component of the batteries are discussed in order to offer tradeoffs between power and energy density, energy cycling, safety and where appropriate end-of-life disposal. Parameters affecting battery performance and cost, longevity using newer metal oxides, different electrolytes are also reviewed in the context of safety concerns and in relation to the solid-electrolyte interface. Separators, membranes, solid-state electrolytes, and electrolyte additives are also reviewed in light of safety, recycling, and high energy endurance issues. The book is intended for a wide audience, such as scientists who are new to the field, practitioners, as well as students in the STEM and STEP fields, as well as students working on batteries. The sections on safety and policy would be of great interest to engineers and technologists who want to obtain a solid grounding in the fundamentals of battery science arising from the interaction of electrochemistry, solid-state materials science, surfaces, and interfaces.

Author : Ilari Filpponen,Maria Peresin,Tiina Nypelo
Publisher : Elsevier
Release Date : 2020-03-14
ISBN 10 : 0128041153
Pages : 398 pages

Lignocellulosics: Renewable Feedstock for (Tailored) Functional Materials and Nanotechnology gives a comprehensive overview of recent advances in using lignocellulosic substrates in materials science and nanotechnology. The functionalization and processing of lignocellulosics are described via a number of examples that cover films, gels, sensors, pharmaceutics and energy storage. In addition to the research related to functional cellulose nanomaterials, there has been an increased interest in research on lignin and lignocellulosics. This book explains how utilizing biomaterials as a raw material allows ambitious reconstruction of smart materials that are green and multifunctional. As lignin as a valuable material has gained a lot of attention in the last few years, shifting from purely extraction and fundamental characterization, and now also focusing on the preparation of exciting materials, such as nanoparticles, readers will find this to be a comprehensive resource on the topic. Provides a detailed description of functional lignocellulosic materials and their properties Brings together research advances in the areas of chemistry, chemical engineering, physics and materials science Concentrates on the fundamental properties of lignocellulose Includes unique coverage of lignin research

Energy Storage
Author : Robert Huggins
Publisher : Springer Science & Business Media
Release Date : 2010-08-12
ISBN 10 : 1441910247
Pages : 406 pages

Introduction Energy is necessary for a number of reasons, the most basic and obvious involve the preparation of food and the provision of heat to make life comfortable, or at least, bearable. Subsequently, a wide range of technological uses of energy have emerged and been developed, so that the availability of energy has become a central issue in society. The easiest way to acquire useful energy is to simply ?nd it as wood or a hydrocarbon fossil fuel in nature. But it has often been found to be advantageous to convert what is simply available in nature into more useful forms, and the processing and conversion of raw materials, especially petrochemicals have become a very large industry. Wood Wood has been used to provide heat for a great many years. In some cases, it can be acquired as needed by foraging, or cutting, followed by simple collection. When it is abundant there is relatively little need for it to be stored. However, many societies have found it desirable to collect more wood than is immediately needed during warm periods during the year, and to store it up for use in the winter, when the needs are greater, or its collection is not so convenient. One can still see this in some locations, such as the more remote communities in the Alps, for example. One might think of this as the oldest and simplest example of energy storage.

Nanostructures in Ferroelectric Films for Energy Applications
Author : Jun Ouyang
Publisher : Elsevier
Release Date : 2019-07-15
ISBN 10 : 0128138564
Pages : 384 pages

Nanostructures in Ferroelectric Films for Energy Applications: Grains, Domains, Interfaces and the Engineering Methods presents methods of engineering nanostructures in ferroelectric films to improve their performance in energy harvesting and conversion and storage. Ferroelectric films, which have broad applications, including the emerging energy technology, usually consist of nanoscale inhomogeneities. For polycrystalline films, the size and distribution of nano-grains determines the macroscopic properties, especially the field-induced polarization response. For epitaxial films, the energy of internal long-range electric and elastic fields during their growth are minimized by formation of self-assembled nano-domains. This book is an accessible reference for both instructors in academia and R&D professionals. Provides the necessary components for the systematic study of the structure-property relationship in ferroelectric thin film materials using case studies in energy applications Written by leading experts in the research areas of piezoelectrics, electrocalorics, ferroelectric dielectrics (especially in capacitive energy storage), ferroelectric domains, and ferroelectric-Si technology Includes a well balanced mix of theoretical design and simulation, materials processing and integration, and dedicated characterization methods of the involved nanostructures

Introduction to Materials for Advanced Energy Systems
Author : Colin Tong
Publisher : Springer
Release Date : 2018-12-12
ISBN 10 : 3319980025
Pages : 911 pages

This first of its kind text enables today’s students to understand current and future energy challenges, to acquire skills for selecting and using materials and manufacturing processes in the design of energy systems, and to develop a cross-functional approach to materials, mechanics, electronics and processes of energy production. While taking economic and regulatory aspects into account, this textbook provides a comprehensive introduction to the range of materials used for advanced energy systems, including fossil, nuclear, solar, bio, wind, geothermal, ocean and hydropower, hydrogen, and nuclear, as well as thermal energy storage and electrochemical storage in fuel cells. A separate chapter is devoted to emerging energy harvesting systems. Integrated coverage includes the application of scientific and engineering principles to materials that enable different types of energy systems. Properties, performance, modeling, fabrication, characterization and application of structural, functional and hybrid materials are described for each energy system. Readers will appreciate the complex relationships among materials selection, optimizing design, and component operating conditions in each energy system. Research and development trends of novel emerging materials for future hybrid energy systems are also considered. Each chapter is basically a self-contained unit, easily enabling instructors to adapt the book for coursework. This textbook is suitable for students in science and engineering who seek to obtain a comprehensive understanding of different energy processes, and how materials enable energy harvesting, conversion, and storage. In setting forth the latest advances and new frontiers of research, the text also serves as a comprehensive reference on energy materials for experienced materials scientists, engineers, and physicists. Includes pedagogical features such as in-depth side bars, worked-out and end-of- chapter exercises, and many references to further reading Provides comprehensive coverage of materials-based solutions for major and emerging energy systems Brings together diverse subject matter by integrating theory with engaging insights

Thin Films for Energy Harvesting, Conversion, and Storage
Author : Zhong Chen,Yuxin Tang,Xin Zhao
Publisher : MDPI
Release Date : 2019-11-07
ISBN 10 : 3039217240
Pages : 174 pages

Efficient clean energy harvesting, conversion, and storage technologies are of immense importance for the sustainable development of human society. To this end, scientists have made significant advances in recent years regarding new materials and devices for improving the energy conversion efficiency for photovoltaics, thermoelectric generation, photoelectrochemical/electrolytic hydrogen generation, and rechargeable metal ion batteries. The aim of this Special Issue is to provide a platform for research scientists and engineers in these areas to demonstrate and exchange their latest research findings. This thematic topic undoubtedly represents an extremely important technological direction, covering materials processing, characterization, simulation, and performance evaluation of thin films used in energy harvesting, conversion, and storage.

2D Nanomaterials for Energy Applications
Author : Spyridon Zafeiratos
Publisher : Elsevier
Release Date : 2019-11-22
ISBN 10 : 0128168897
Pages : 352 pages

2D Nanomaterials for Energy Applications: Graphene and Beyond discusses the current state-of-the art of 2D nanomaterials used in energy-related applications. Sections cover nanogenerators, hydrogen storage and theoretical design. Each chapter focuses on a different energy application, thus allowing readers to gain a greater understanding of the most promising 2D materials in the field. The book's ultimate goal lies in describing how each energy technology is beneficial, hence it provides a valuable reference source for materials scientists and engineers. The physical and chemical properties of 2D materials can be effectively tuned through different strategies, such as controlling dimensions, the crystallographic structure and defects, or doping with heteroatoms. This flexibility facilitates the design of 2D materials for dedicated applications in the field of energy conversion and storage. Offers a single source for the major practical applications of 2D materials in the field of energy conversion and storage Explores how 2D materials are being used to create new, more efficient industrial energy products and devices Compares a variety of 2D materials, showing how the properties of a range of these materials make them beneficial for specific energy applications

Materials for Sustainable Energy
Author : Vincent Dusastre
Publisher : World Scientific
Release Date : 2011
ISBN 10 : 9814317640
Pages : 331 pages

The search for cleaner, cheaper, smaller and more efficient energy technologies has to a large extent been motivated by the development of new materials. The aim of this collection of articles is therefore to focus on what materials-based solutions can offer and show how the rationale design and improvement of their physical and chemical properties can lead to energy-production alternatives that have the potential to compete with existing technologies. In terms of alternative means to generate electricity that utilize renewable energy sources, the most dramatic breakthroughs for both mobile (i.e., transportation) and stationary applications are taking place in the fields of solar and fuel cells. And from an energy-storage perspective, exciting developments can be seen emerging from the fields of rechargeable batteries and hydrogen storage.

Nanostructured Materials for Solar Energy Conversion
Author : Tetsuo Soga
Publisher : Elsevier
Release Date : 2006-12-14
ISBN 10 : 9780080468303
Pages : 614 pages

Nanostructured Materials for Solar Energy Conversion covers a wide variety of materials and device types from inorganic materials to organic materials. This book deals with basic semiconductor physics, modelling of nanostructured solar cell, nanostructure of conventional solar cells such as silicon, CIS and CdTe, dye-sensitized solar cell, organic solar cell, photosynthetic materials, fullerene, extremely thin absorber (ETA) solar cell, quantum structured solar cell, intermediate band solar cell, carbon nanotube, etc. including basic principle and the latest results. There are many books written on conventional p-n junction solar cells, but few books focus on new concepts in this area. * Focuses on the use of nanostructured materials for solar energy * Looks at a wide variety of materials and device types * Covers both organic and inorganic materials

Fiber-Shaped Energy Harvesting and Storage Devices
Author : Huisheng Peng
Publisher : Springer
Release Date : 2015-01-06
ISBN 10 : 366245744X
Pages : 218 pages

This comprehensive book covers flexible fiber-shaped devices in the area of energy conversion and storage. The first part of the book introduces recently developed materials, particularly, various nanomaterials and composite materials based on nanostructured carbon such as carbon nanotubes and graphene, metals and polymers for the construction of fiber electrodes. The second part of the book focuses on two typical twisted and coaxial architectures of fiber-shaped devices for energy conversion and storage. The emphasis is placed on dye-sensitized solar cells, polymer solar cells, lithium-ion batteries, electrochemical capacitors and integrated devices. The future development and challenges of these novel and promising fiber-shaped devices are summarized in the final part. This book is the first to introduce fiber-shaped electronic devices, which offer many fascinating advantages compared with the conventional planar structure. It is particularly designed to review the state-of-art developments in fiber-shaped devices for energy conversion and storage. The book will provide a valuable resource for researchers and students working in a wide variety of fields such as advanced materials, new energy, electrochemistry, applied physics, nanoscience and nanotechnology, and polymer science and engineering. Huisheng Peng, PhD, is a Professor and Associate Chair of the Department of Macromolecular Science and PI of the Laboratory of Advanced Materials, Fudan University, Shanghai, China.

Approaches in Bioremediation
Author : Ram Prasad,Elisabet Aranda
Publisher : Springer
Release Date : 2018-12-08
ISBN 10 : 3030023699
Pages : 403 pages

Bioremediation refers to the clean‐up of pollution in soil, groundwater, surface water, and air using typically microbiological processes. It uses naturally occurring bacteria and fungi or plants to degrade, transform or detoxify hazardous substances to human health or the environment. For bioremediation to be effective, microorganisms must enzymatically attack the pollutants and convert them to harmless products. As bioremediation can be effective only where environmental conditions permit microbial growth and action, its application often involves the management of ecological factors to allow microbial growth and degradation to continue at a faster rate. Like other technologies, bioremediation has its limitations. Some contaminants, such as chlorinated organic or high aromatic hydrocarbons, are resistant to microbial attack. They are degraded either gradually or not at all, hence, it is not easy to envisage the rates of clean-up for bioremediation implementation. Bioremediation represents a field of great expansion due to the important development of new technologies. Among them, several decades on metagenomics expansion has led to the detection of autochthonous microbiota that plays a key role during transformation. Transcriptomic guides us to know the expression of key genes and proteomics allow the characterization of proteins that conduct specific reactions. In this book we show specific technologies applied in bioremediation of main interest for research in the field, with special attention on fungi, which have been poorly studied microorganisms. Finally, new approaches in the field, such as CRISPR-CAS9, are also discussed. Lastly, it introduces management strategies, such as bioremediation application for managing affected environment and bioremediation approaches. Examples of successful bioremediation applications are illustrated in radionuclide entrapment and retardation, soil stabilization and remediation of polycyclic aromatic hydrocarbons, phenols, plastics or fluorinated compounds. Other emerging bioremediation methods include electro bioremediation, microbe-availed phytoremediation, genetic recombinant technologies in enhancing plants in accumulation of inorganic metals, and metalloids as well as degradation of organic pollutants, protein-metabolic engineering to increase bioremediation efficiency, including nanotechnology applications are also discussed.