nanoscale semiconductor lasers

Download Nanoscale Semiconductor Lasers ebooks in PDF, epub, tuebl, textbook from Skinvaders.Com. Read online Nanoscale Semiconductor Lasers books on any device easily. We cannot guarantee that Nanoscale Semiconductor Lasers book is available. Click download or Read Online button to get book, you can choose FREE Trial service. READ as many books as you like (Personal use).

Nanoscale Semiconductor Lasers
Author : Cunzhu Tong,Chennupati Jagadish
Publisher : Elsevier
Release Date : 2019-08-06
ISBN 10 : 0128141638
Pages : 206 pages
GET BOOK!

Nanoscale Semiconductor Lasers focuses on specific issues relating to laser nanomaterials and their use in laser technology. The book presents both fundamental theory and a thorough overview of the diverse range of applications that have been developed using laser technology based on novel nanostructures and nanomaterials. Technologies covered include nanocavity lasers, carbon dot lasers, 2D material lasers, plasmonic lasers, spasers, quantum dot lasers, quantum dash and nanowire lasers. Each chapter outlines the fundamentals of the topic and examines material and optical properties set alongside device properties, challenges, issues and trends. Dealing with a scope of materials from organic to carbon nanostructures and nanowires to semiconductor quantum dots, this book will be of interest to graduate students, researchers and scientific professionals in a wide range of fields relating to laser development and semiconductor technologies. Provides an overview of the active field of nanostructured lasers, illustrating the latest topics and applications Demonstrates how to connect different classes of material to specific applications Gives an overview of several approaches to confine and control light emission and amplification using nanostructured materials and nano-scale cavities

Compact Semiconductor Lasers
Author : Richard De La Rue,Jean-Michel Lourtioz,Siyuan Yu
Publisher : John Wiley & Sons
Release Date : 2014-04-03
ISBN 10 : 3527655360
Pages : 328 pages
GET BOOK!

This book brings together in a single volume a unique contribution by the top experts around the world in the field of compact semiconductor lasers to provide a comprehensive description and analysis of the current status as well as future directions in the field of micro- and nano-scale semiconductor lasers. It is organized according to the various forms of micro- or nano-laser cavity configurations with each chapter discussing key technical issues, including semiconductor carrier recombination processes and optical gain dynamics, photonic confinement behavior and output coupling mechanisms, carrier transport considerations relevant to the injection process, and emission mode control. Required reading for those working in and researching the area of semiconductors lasers and micro-electronics.

Nanotechnology for Electronic Materials and Devices
Author : Anatoli Korkin,Evgeni Gusev,Jan K. Labanowski,Serge Luryi
Publisher : Springer Science & Business Media
Release Date : 2010-05-07
ISBN 10 : 9780387499659
Pages : 368 pages
GET BOOK!

Quickly becoming the hottest topic of the new millennium (2.4 billion dollars funding in US alone) Current status and future trends of micro and nanoelectronics research Written by leading experts in the corresponding research areas Excellent tutorial for graduate students and reference for "gurus" Provides a broad overlook and fundamentals of nanoscience and nanotechnology from chemistry to electronic devices

Nanoscale Semiconductor Memories
Author : Santosh K. Kurinec,Krzysztof Iniewski
Publisher : CRC Press
Release Date : 2017-07-28
ISBN 10 : 1466560614
Pages : 448 pages
GET BOOK!

Nanoscale memories are used everywhere. From your iPhone to a supercomputer, every electronic device contains at least one such type. With coverage of current and prototypical technologies, Nanoscale Semiconductor Memories: Technology and Applications presents the latest research in the field of nanoscale memories technology in one place. It also covers a myriad of applications that nanoscale memories technology has enabled. The book begins with coverage of SRAM, addressing the design challenges as the technology scales, then provides design strategies to mitigate radiation induced upsets in SRAM. It discusses the current state-of-the-art DRAM technology and the need to develop high performance sense amplifier circuitry. The text then covers the novel concept of capacitorless 1T DRAM, termed as Advanced-RAM or A-RAM, and presents a discussion on quantum dot (QD) based flash memory. Building on this foundation, the coverage turns to STT-RAM, emphasizing scalable embedded STT-RAM, and the physics and engineering of magnetic domain wall "racetrack" memory. The book also discusses state-of-the-art modeling applied to phase change memory devices and includes an extensive review of RRAM, highlighting the physics of operation and analyzing different materials systems currently under investigation. The hunt is still on for universal memory that fits all the requirements of an "ideal memory" capable of high-density storage, low-power operation, unparalleled speed, high endurance, and low cost. Taking an interdisciplinary approach, this book bridges technological and application issues to provide the groundwork for developing custom designed memory systems.

Semiconductor Laser Engineering, Reliability and Diagnostics
Author : Peter W. Epperlein
Publisher : John Wiley & Sons
Release Date : 2013-03-18
ISBN 10 : 1119990335
Pages : 522 pages
GET BOOK!

This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors are discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performance- and reliability-impacting factors such as temperature, stress and material instabilities. Further key features include: practical design guidelines that consider also reliability related effects, key laser robustness factors, basic laser fabrication and packaging issues; detailed discussion of diagnostic investigations of diode lasers, the fundamentals of the applied approaches and techniques, many of them pioneered by the author to be fit-for-purpose and novel in the application; systematic insight into laser degradation modes such as catastrophic optical damage, and a wide range of technologies to increase the optical strength of diode lasers; coverage of basic concepts and techniques of laser reliability engineering with details on a standard commercial high power laser reliability test program. Semiconductor Laser Engineering, Reliability and Diagnostics reflects the extensive expertise of the author in the diode laser field both as a top scientific researcher as well as a key developer of high-power highly reliable devices. With invaluable practical advice, this new reference book is suited to practising researchers in diode laser technologies, and to postgraduate engineering students. Dr. Peter W. Epperlein is Technology Consultant with his own semiconductor technology consulting business Pwe-PhotonicsElectronics-IssueResolution in the UK. He looks back at a thirty years career in cutting edge photonics and electronics industries with focus on emerging technologies, both in global and start-up companies, including IBM, Hewlett-Packard, Agilent Technologies, Philips/NXP, Essient Photonics and IBM/JDSU Laser Enterprise. He holds Pre-Dipl. (B.Sc.), Dipl. Phys. (M.Sc.) and Dr. rer. nat. (Ph.D.) degrees in physics, magna cum laude, from the University of Stuttgart, Germany. Dr. Epperlein is an internationally recognized expert in compound semiconductor and diode laser technologies. He has accomplished R&D in many device areas such as semiconductor lasers, LEDs, optical modulators, quantum well devices, resonant tunneling devices, FETs, and superconducting tunnel junctions and integrated circuits. His pioneering work on sophisticated diagnostic research has led to many world’s first reports and has been adopted by other researchers in academia and industry. He authored more than seventy peer-reviewed journal papers, published more than ten invention disclosures in the IBM Technical Disclosure Bulletin, has served as reviewer of numerous proposals for publication in technical journals, and has won five IBM Research Division Awards. His key achievements include the design and fabrication of high-power, highly reliable, single mode diode lasers. Book Reviews “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Prof. em. Dr. Heinz Jäckel, High Speed Electronics and Photonics, Swiss Federal Institute of Technology ETH Zürich, Switzerland The book “Semiconductor Laser Engineering, Reliability and Diagnostics” by Dr. P.W. Epperlein is a landmark in the recent literature on semiconductor lasers because it fills a longstanding gap between many excellent books on laser theory and the complex and challenging endeavor to fabricate these devices reproducibly and reliably in an industrial, real world environment. Having worked myself in the early research and development of high power semiconductor lasers, I appreciate the competent, complete and skillful presentation of these three highly interrelated topics, where small effects have dramatic consequences on the success of a final product, on the ultimate performance and on the stringent reliability requirements, which are the name of the game. As the title suggests the author addresses three tightly interwoven and critical topics of state-of-the-art power laser research. The three parts are: device and mode stability engineering (chapter 1, 2), reliability mechanisms and reliability assessment strategies (chapter 3, 4, 5, 6) and finally material and device diagnostics (chapter 7, 8, 9) all treated with a strong focus on the implementation. This emphasis on the complex practical aspects for a large-scale power laser fabrication is a true highlight of the book. The subtle interplay between laser design, reliability strategies, advanced failure analysis and characterization techniques are elaborated in a very rigorous and scientific way using a very clear and easy to read representation of the complex interrelation of the three major topics. I will abstain from trying to provide a complete account of all the topics but mainly concentrate on the numerous highlights. The first part 1 “Laser Engineering” is divided in two chapters on basic electronic-optical, structural, material and resonator laser engineering on the one side, and on single mode control and stability at very high, still reliable power-levels with the trade-off between mirror damage, single mode stability on the other side. To round up the picture less well-known concepts and the state-of-the-art of large-area lasers, which can be forced into single-mode operation, are reviewed carefully. The subtle and complex interplay, which is challenging to optimize for a design for reliability and low stress as a major boundary condition is crucial for the design. The section gives a rather complete and well-referenced account of all relevant aspects, relations and trade-offs for understanding the rest of the book. The completeness of the presentation on power laser diode design based on basic physical and plausible arguments is mainly based on analytic mathematical relations as well as experiments providing a new and well-balanced addition for the power diode laser literature in particular. Modern 2D self-consistent electro-optical laser modeling including carrier hole burning and thermal effects – this is important because the weak optical guiding and gain-discrimination depend critically on rather small quantities and effects, which are difficult to optimize experimentally – is used in the book for simulation results, but is not treated separately. The novel and really original, “gap-filling” bulk of the book is elaborated by the author in a very clear way in the following four chapters in the part 2 “Laser Reliability” on laser degradation physics and mirror design and passivation at high power, followed then by two very application oriented chapters on reliability design engineering and practical reliability strategies and implementation procedures. This original combination of integral design and reliability aspects – which are mostly neglected in standard literature – is certainly a major plus of this book. I liked this second section as a whole, because it provides excellent insights in degradation physics on a high level and combines it in an interesting and skillful way with the less “glamorous” (unfortunately) but highly relevant reliability science and testing strategies, which is particularly important for devices operating at extreme optical stresses with challenging lifetime requirements in a real word environment. Finally, the last part 3 “Laser Diagnostics” comprising three chapters, is devoted mainly to advanced experimental diagnostics techniques for material integrity, mechanical stress, deep level defects, various dynamic laser degradation effects, surface- and interface quality, and most importantly heating and disordering of mirrors and mirror coatings. The topics of characterization techniques comprising micro-Raman- and micro-thermoreflectance-probing, 2K photoluminescence spectroscopy, micro-electroluminescence and photoluminescence scanning, and deep-level-transient spectroscopy have been pioneered by the author for the specific applications over many years guaranteeing many competent and well represented insights. These techniques are brilliantly discussed and the information distributed in many articles by the author has been successfully unified in a book form. In my personal judgment and liking, I consider the parts 2 and 3 on reliability and diagnostics as the most valuable and true novel contribution of the book, which in combination with the extremely well-covered laser design of part 1 clearly fill the gap in the current diode laser literature, which in this detail has certainly been neglected in the past. In summary, I can highly recommend this excellent, well-organized and clearly written book to readers who are already familiar with basic diode laser theory and who are active in the academic and industrial fabrication and characterization of semiconductor lasers. Due to its completeness, it also serves as an excellent reference of the current state-of-the-art in reliability engineering and device and material diagnostics. Needless to mention that the quality of the book, its representations and methodical structure meet the highest expectation and are certainly a tribute from the long and broad experience of the author in academic laser science and the industrial commercialization of high power diode lasers. In my opinion, this book was a pleasure to read and due to its quality and relevance deserves a large audience in the power diode laser community! Prof. em. Dr. Heinz Jäckel, High Speed Electronics and Photonics, Swiss Federal Institute of Technology ETH Zürich, Switzerland June 16, 2013 ========================================== “Semiconductor Laser Engineering, Reliability and Diagnostics:

Quantum-Well Laser Array Packaging
Author : Jens Tomm,Juan Jiménez
Publisher : McGraw Hill Professional
Release Date : 2007
ISBN 10 : 0071460322
Pages : 428 pages
GET BOOK!

Quantum-well lasers offer the promise of lightning-fast data communications - 10-to-100 times faster than broadband. While the architecture for these devices already exists, they suffer from material packaging problems. This book addresses this critical issue. It offers screening and packaging techniques useful for researchers.

Long-Wavelength Infrared Semiconductor Lasers
Author : Hong K. Choi
Publisher : John Wiley & Sons
Release Date : 2004-03-18
ISBN 10 : 9780471392002
Pages : 395 pages
GET BOOK!

Long-wavelength Infrared Semiconductor Lasers provides a comprehensive review of the current status of semiconductor coherent sources emitting in the mid-to far-infrared spectrum and their applications. It includes three topics not covered in any previous book: far-infrared emission from photo-mixers as well as from hot-hole lasers, and InP-based lasers emitting beyond two micrometers. Semiconductor lasers emitting at more than two micrometers have many applications such as in trace gas analysis, environmental monitoring, and industrial process control. Because of very rapid progress in recent years, until this book no comprehensive information beyond scattered journal articles is available at present.

Semiconductor Nanolasers
Author : Qing Gu,Yeshaiahu Fainman
Publisher : Cambridge University Press
Release Date : 2017-02-16
ISBN 10 : 1316982696
Pages : 329 pages
GET BOOK!

This unique resource explains the fundamental physics of semiconductor nanolasers, and provides detailed insights into their design, fabrication, characterization, and applications. Topics covered range from the theoretical treatment of the underlying physics of nanoscale phenomena, such as temperature dependent quantum effects and active medium selection, to practical design aspects, including the multi-physics cavity design that extends beyond pure electromagnetic consideration, thermal management and performance optimization, and nanoscale device fabrication and characterization techniques. The authors also discuss technological applications of semiconductor nanolasers in areas such as photonic integrated circuits and sensing. Providing a comprehensive overview of the field, detailed design and analysis procedures, a thorough investigation of important applications, and insights into future trends, this is essential reading for graduate students, researchers, and professionals in optoelectronics, applied photonics, physics, nanotechnology, and materials science.

Handbook of Optical Microcavities
Author : Anthony H. W. Choi
Publisher : CRC Press
Release Date : 2014-10-06
ISBN 10 : 9814463256
Pages : 526 pages
GET BOOK!

An optical cavity confines light within its structure and constitutes an integral part of a laser device. Unlike traditional gas lasers, semiconductor lasers are invariably much smaller in dimensions, making optical confinement more critical than ever. In this book, modern methods that control and manipulate light at the micrometer and nanometer scales by using a variety of cavity geometries and demonstrate optical resonance from ultra-violet (UV) to infra-red (IR) bands across multiple material platforms are explored. The book has a comprehensive collection of chapters that cover a wide range of topics pertaining to resonance in optical cavities and are contributed by leading researchers in the field. The topics include theory, design, simulation, fabrication, and characterization of micrometer- and nanometer-scale structures and devices that support cavity resonance via various mechanisms such as Fabry–Pérot, whispering gallery, photonic bandgap, and plasmonic modes. The chapters discuss optical cavities that resonate from UV to IR wavelengths and are based on prominent III-V material systems, including Al, In, and Ga nitrides, ZnO, and GaAs.

International Journal of Nanotechnology
Author : N.A
Publisher : N.A
Release Date : 2004
ISBN 10 :
Pages : 329 pages
GET BOOK!

Mid-infrared Semiconductor Optoelectronics
Author : Anthony Krier
Publisher : Springer
Release Date : 2007-05-22
ISBN 10 : 1846282098
Pages : 752 pages
GET BOOK!

Optoelectronic devices operating in the mid-infrared wavelength range offer applications in a variety of areas from environmental gas monitoring around oil rigs to the detection of narcotics. They could also be used for free-space optical communications, thermal imaging applications and the development of "homeland security" measures. Mid-infrared Semiconductor Optoelectronics is an overview of the current status and technological development in this rapidly emerging area; the basic physics, some of the problems facing the design engineer and a comparison of possible solutions are laid out; the different lasers used as sources for mid-infrared technology are considered; recent work in detectors is reviewed; the last part of the book is concerned with applications. With a world-wide authorship of experts working in many mid-infrared-related fields this book will be an invaluable reference for researchers and graduate students drawn from physics, electronic and electrical engineering and materials science.

Advanced Semiconductor and Organic Nano-techniques: Nanoscale electronics and optoelectronics
Author : Hadis Morkoç
Publisher : N.A
Release Date : 2003
ISBN 10 : 9780125070614
Pages : 1495 pages
GET BOOK!

Physical sciences and engineering, as well as biological sciences have recently made great strides in their respective fields. More importantly, the cross-fertilization of ideas, paradigms and methodologies have led to the unprecedented technological developments in areas such as information processing, full colour semiconductor displays, compact biosensors and controlled drug discovery to name a few. Top experts in their respective fields have come together to discuss the latest developments and the future of micro-nano electronics. They investigate issues to be faced in ultimate limits such as single electron transitors; zero dimensional systems for unique properties; thresholdless lasers, electronics based on inexpensive and flexible plastic chips; cell manipulation; biosensors; DNA based computers; quantum computing; DNA sequencing chips; micro fluidics; nanomotors based on molecules; molecular electronics and recently emerging wide bandgap semiconductors for emitters, detectors and power amplifiers. Contributions from top experts in this field Covers a wide range of topics