Author | : Ali Kosar,Abdolali Sadaghiani |
Publisher | : Academic Press |
Release Date | : 2021-06-15 |
ISBN 10 | : 9780128169230 |
Pages | : 304 pages |
Nanofluid Boiling presents valuable insights into boiling heat transfer mechanisms, offering state-of-the-art techniques for overcoming obstacles against nanofluid applications. In addition, the book points out emerging industrial applications and guides researchers and engineers in their research and design efforts. In addition, recommendations on future research directions and the design of systems involving nanofluids are presented at the end of each chapter. The book's authors comprehensively cover mechanisms, parametric effects and enhancement techniques in the boiling of nanofluids, providing updated, detailed information about recent developments and findings. Gives insights into nanofluid boiling heat transfer mechanisms Offers state-of-the-art techniques for overcoming challenges and difficulties in the applications of nanofluids Presents the most updated information about nanofluid boiling heat transfer, mechanisms of heat transfer, and critical heat flux enhancements Focuses on parametric effects, such as nanofluid properties (size, concentration, nanoparticle type), preparation methods on heat transfer and critical heat flux mechanisms, bubble dynamics, flow patterns and pressure drop
Author | : Liqiu Wang |
Publisher | : Springer Science & Business Media |
Release Date | : 2009-10-15 |
ISBN 10 | : 3642026907 |
Pages | : 246 pages |
The term transport phenomena is used to describe processes in which mass, momentum, energy and entropy move about in matter. Advances in Transport Phenomena provide state-of-the-art expositions of major advances by theoretical, numerical and experimental studies from a molecular, microscopic, mesoscopic, macroscopic or megascopic point of view across the spectrum of transport p- nomena, from scientific enquiries to practical applications. The annual review series intends to fill the information gap between regularly published journals and university-level textbooks by providing in-depth review articles over a broader scope than in journals. The authoritative articles, contributed by international- leading scientists and practitioners, establish the state of the art, disseminate the latest research discoveries, serve as a central source of reference for fundamentals and applications of transport phenomena, and provide potential textbooks to senior undergraduate and graduate students. The series covers mass transfer, fluid mechanics, heat transfer and thermo- namics. The 2009 volume contains the four articles on biomedical, environmental and nanoscale transports. The editorial board expresses its appreciation to the c- tributing authors and reviewers who have maintained the standard associated with Advances in Transport Phenomena. We also would like to acknowledge the efforts of the staff at Springer who have made the professional and attractive pr- entation of the volume. Serial Editorial Board Editor-in-Chief Professor L. Q. Wang The University of Hong Kong, Hong Kong; [email protected] hk Editors Professor A. R. Balakrishnan Indian Institute of Technology Madras, India Professor A.
Author | : John R Thome |
Publisher | : World Scientific Publishing |
Release Date | : 2018-05-18 |
ISBN 10 | : 9813234385 |
Pages | : 1372 pages |
Set IV is a new addition to the previous Sets I, II and III. It contains 23 invited chapters from international specialists on the topics of numerical modeling of pulsating heat pipes and of slug flows with evaporation; lattice Boltzmann modeling of pool boiling; fundamentals of boiling in microchannels and microfin tubes, CO2 and nanofluids; testing and modeling of micro-two-phase cooling systems for electronics; and various special topics (flow separation in microfluidics, two-phase sensors, wetting of anisotropic surfaces, ultra-compact heat exchangers, etc.). The invited authors are leading university researchers and well-known engineers from leading corporate research laboratories (ABB, IBM, Nokia Bell Labs). Numerous 'must read' chapters are also included here for the two-phase community. Set IV constitutes a 'must have' engineering and research reference together with previous Sets I, II and III for thermal engineering researchers and practitioners.
Boiling: Research and Advances presents the latest developments and improvements in the technologies, instrumentation, and equipment surrounding boiling. Presented by the Japan Society of Mechanical Engineers, the book takes a holistic approach, first providing principles, and then numerous practical applications that consider size scales. Through six chapters, the book covers contributed sections from knowledgeable specialists on various topics, ranging from outlining boiling phenomena and heat transfer characteristics, to the numerical simulation of liquid-gas two phase flow. It summarizes, in a single volume, the state-of-the-art in boiling heat transfer and provides a valuable resource for thermal engineers and practitioners working in the thermal sciences and thermal engineering. Explores the most recent advancements in boiling research and technology from the last twenty years Provides section content written by contributing experts in their respective research areas Shares research being conducted and advancements being made on boiling and heat transfer in Japan, one of the major research hubs in this field
Author | : Sarit K. Das,Stephen U. Choi,Wenhua Yu,T. Pradeep |
Publisher | : John Wiley & Sons |
Release Date | : 2007-12-04 |
ISBN 10 | : 0470180684 |
Pages | : 485 pages |
Introduction to nanofluids--their properties, synthesis, characterization, and applications Nanofluids are attracting a great deal of interest with their enormous potential to provide enhanced performance properties, particularly with respect to heat transfer. In response, this text takes you on a complete journey into the science and technology of nanofluids. The authors cover both the chemical and physical methods for synthesizing nanofluids, explaining the techniques for creating a stable suspension of nanoparticles. You get an overview of the existing models and experimental techniques used in studying nanofluids, alongside discussions of the challenges and problems associated with some of these models. Next, the authors set forth and explain the heat transfer applications of nanofluids, including microelectronics, fuel cells, and hybrid-powered engines. You also get an introduction to possible future applications in large-scale cooling and biomedicine. This book is the work of leading pioneers in the field, one of whom holds the first U.S. patent for nanofluids. They have combined their own first-hand knowledge with a thorough review of theliterature. Among the key topics are: * Synthesis of nanofluids, including dispersion techniques and characterization methods * Thermal conductivity and thermo-physical properties * Theoretical models and experimental techniques * Heat transfer applications in microelectronics, fuel cells, and vehicle engines This text is written for researchers in any branch of science and technology, without any prerequisite.It therefore includes some basic information describing conduction, convection, and boiling of nanofluids for those readers who may not have adequate background in these areas. Regardless of your background, you'll learn to develop nanofluids not only as coolants, but also for a host ofnew applications on the horizon.
Author | : Vincenzo Bianco,Oronzio Manca,Sergio Nardini,Kambiz Vafai |
Publisher | : CRC Press |
Release Date | : 2015-04-01 |
ISBN 10 | : 1482254026 |
Pages | : 481 pages |
Nanofluids are gaining the attention of scientists and researchers around the world. This new category of heat transfer medium improves the thermal conductivity of fluid by suspending small solid particles within it and offers the possibility of increased heat transfer in a variety of applications. Bringing together expert contributions from across the globe, Heat Transfer Enhancement with Nanofluids presents a complete understanding of the application of nanofluids in a range of fields and explains the main techniques used in the analysis of nanofuids flow and heat transfer. Providing a rigorous framework to help readers develop devices employing nanofluids, the book addresses basic topics that include the analysis and measurements of thermophysical properties, convection, and heat exchanger performance. It explores the issues of convective instabilities, nanofluids in porous media, and entropy generation in nanofluids. The book also contains the latest advancements, innovations, methodologies, and research on the subject. Presented in 16 chapters, the text: Discusses the possible mechanisms of thermal conduction enhancement Reviews the results of a theoretical analysis determining the anomalous enhancement of heat transfer in nanofluid flow Assesses different approaches modeling the thermal conductivity enhancement of nanofluids Focuses on experimental methodologies used to determine the thermophysical properties of nanofluids Analyzes forced convection heat transfer in nanofluids in both laminar and turbulent convection Highlights the application of nanofluids in heat exchangers and microchannels Discusses the utilization of nanofluids in porous media Introduces the boiling of nanofluids Treats pool and flow boiling by analyzing the effect of nanoparticles on these complex phenomena Indicates future research directions to further develop this area of knowledge, and more Intended as a reference for researchers and engineers working in the field, Heat Transfer Enhancement with Nanofluids presents advanced topics that detail the strengths, weaknesses, and potential future developments in nanofluids heat transfer.
Author | : Wu Fan |
Publisher | : Trans Tech Publications Ltd |
Release Date | : 2011-10-24 |
ISBN 10 | : 3038137081 |
Pages | : 5850 pages |
Volume is indexed by Thomson Reuters CPCI-S (WoS). These proceedings comprise fully-refereed papers presented at the conference. The main conference theme was Mechanical and Aerospace Engineering, and the main goal of the event was to provide an international scientific forum for the exchange of new ideas in a number of fields and for in-depth discussions with peers from around the world. Core areas of mechanical and aerospace engineering are covered, together with multidisciplinary, interdisciplinary research and applications; thus making the work an excellent guide to those topics.
Author | : Sarhan M. Musa |
Publisher | : CRC Press |
Release Date | : 2018-09-03 |
ISBN 10 | : 1482233819 |
Pages | : 265 pages |
Understanding the physical properties and dynamical behavior of nanochannel flows has been of great interest in recent years and is important for the theoretical study of fluid dynamics and engineering applications in physics, chemistry, medicine, and electronics. The flows inside nanoscale pores are also important due to their highly beneficial drag and heat transfer properties. Nanoscale Flow: Advances, Modeling, and Applications presents the latest research in the multidisciplinary area of nanoscale flow. Featuring contributions from top inventors in industry, academia, and government, this comprehensive book: Highlights the current status of research on nucleate pool boiling heat transfer, flow boiling heat transfer, and critical heat flux (CHF) phenomena of nanofluids Describes two novel fractal models for pool boiling heat transfer of nanofluids, including subcooled pool boiling and nucleate pool boiling Explores thermal conductivity enhancement in nanofluids measured with a hot-wire calorimeter Discusses two-phase laminar mixed convection AL2O3–water nanofluid in an elliptic duct Explains the principles of molecular and omics imaging and spectroscopy techniques for cancer detection Analyzes fluid dynamics modeling of the tumor vasculature and drug transport Studies the properties of nanoscale particles and their impact on diagnosis, therapeutics, and theranostics Provides a brief background and review of medical nanoscale flow applications Contains useful appendices of physical constants, equations, common symbols, mathematical formulas, the periodic table, and more A valuable reference for engineers, scientists, and biologists, Nanoscale Flow: Advances, Modeling, and Applications is also designed for researchers, universities, industrial institutions, and government, giving it broad appeal.
Author | : W. J. Minkowycz,E M Sparrow,J. P. Abraham |
Publisher | : CRC Press |
Release Date | : 2016-04-19 |
ISBN 10 | : 1439861951 |
Pages | : 342 pages |
Featuring contributions by leading researchers in the field, Nanoparticle Heat Transfer and Fluid Flow explores heat transfer and fluid flow processes in nanomaterials and nanofluids, which are becoming increasingly important across the engineering disciplines. The book covers a wide range, from biomedical and energy conversion applications to materials properties, and addresses aspects that are essential for further progress in the field, including numerical quantification, modeling, simulation, and presentation. Topics include: A broad review of nanofluid applications, including industrial heat transfer, biomedical engineering, electronics, energy conversion, membrane filtration, and automotive An overview of thermofluids and their importance in biomedical applications and heat-transfer enhancement A deeper look at biomedical applications such as nanoparticle hyperthermia treatments for cancers Issues in energy conversion from dispersed forms to more concentrated and utilizable forms Issues in nanofluid properties, which are less predictable and less repeatable than those of other media that participate in fluid flow and heat transfer Advances in computational fluid dynamic (CFD) modeling of membrane filtration at the microscale The role of nanofluids as a coolant in microchannel heat transfer for the thermal management of electronic equipment The potential enhancement of natural convection due to nanoparticles Examining key topics and applications in nanoscale heat transfer and fluid flow, this comprehensive book presents the current state of the art and a view of the future. It offers a valuable resource for experts as well as newcomers interested in developing innovative modeling and numerical simulation in this growing field.
Author | : N.A |
Publisher | : N.A |
Release Date | : 2004 |
ISBN 10 | : |
Pages | : 329 pages |
Author | : Indian Institute of Science, Bangalore |
Publisher | : N.A |
Release Date | : 2009 |
ISBN 10 | : |
Pages | : 329 pages |
Author | : Ali Mohammad,Inamuddin Dr. |
Publisher | : Springer Science & Business Media |
Release Date | : 2012-03-16 |
ISBN 10 | : 9400717113 |
Pages | : 430 pages |
The conventional solvents used in chemical, pharmaceutical, biomedical and separation processes represent a great challenge to green chemistry because of their toxicity and flammability. Since the beginning of “the 12 Principles of Green Chemistry” in 1998, a general effort has been made to replace conventional solvents with environmentally benign substitutes. Water has been the most popular choice so far, followed by ionic liquids, surfactant, supercritical fluids, fluorous solvents, liquid polymers, bio-solvents and switchable solvent systems. Green Solvents Volume I and II provides a throughout overview of the different types of solvents and discusses their extensive applications in fields such as extraction, organic synthesis, biocatalytic processes, production of fine chemicals, removal of hydrogen sulphide, biochemical transformations, composite material, energy storage devices and polymers. These volumes are written by leading international experts and cover all possible aspects of green solvents’ properties and applications available in today’s literature. Green Solvents Volume I and II is an invaluable guide to scientists, R&D industrial specialists, researchers, upper-level undergraduates and graduate students, Ph.D. scholars, college and university professors working in the field of chemistry and biochemistry.
Author | : Mazlan A. Wahid,Muhammad Idrus Alhamid,Agus Pamitran,Jamaluddin Md Sheriff |
Publisher | : Trans Tech Publications Ltd |
Release Date | : 2013-08-30 |
ISBN 10 | : 3038261971 |
Pages | : 350 pages |
Volume is indexed by Thomson Reuters CPCI-S (WoS). The book aimes at bringing together the current knowledge of academicians, researchers and scholars from all over the world on all aspects of Thermodynamics, Fluid Mechanics, Heat Transfer and Thermal Engineering. In addition to the fundamentals of thermal phenomena and traditional thermal applications, the contributions also address the emerging domains of thermal transport in fishery, building nano-materials, bio-systems, microsystems, power generation, and energy conversion devices.
Author | : Ardiyansyah Yatim |
Publisher | : Trans Tech Publications Ltd |
Release Date | : 2018-08-27 |
ISBN 10 | : 3035732663 |
Pages | : 266 pages |
The 15th International Conference on Quality in Research (QiR) 2017 was held in Bali, Indonesia on July, 24 27, 2017 and conference focused on the presentation of the innovative research in the area of materials science, metallurgy, materials processing technologies and chemical engineering. We hope that the presented research results will be interesting and useful for many researchers and engineers.
Author | : N.A |
Publisher | : N.A |
Release Date | : 2004 |
ISBN 10 | : |
Pages | : 329 pages |
Author | : American Nuclear Society |
Publisher | : N.A |
Release Date | : 1958 |
ISBN 10 | : |
Pages | : 329 pages |
Each volume contains proceedings of the annual conference of the American Nuclear Society.
Author | : N.A |
Publisher | : N.A |
Release Date | : 2008 |
ISBN 10 | : |
Pages | : 329 pages |
Author | : N.A |
Publisher | : N.A |
Release Date | : 2005 |
ISBN 10 | : |
Pages | : 329 pages |
Author | : Konstantinos Kouloulias |
Publisher | : N.A |
Release Date | : 2017 |
ISBN 10 | : |
Pages | : 329 pages |