melt electrospinning

Download Melt Electrospinning ebooks in PDF, epub, tuebl, textbook from Skinvaders.Com. Read online Melt Electrospinning books on any device easily. We cannot guarantee that Melt Electrospinning book is available. Click download or Read Online button to get book, you can choose FREE Trial service. READ as many books as you like (Personal use).

Melt Electrospinning
Author : Yong Liu,Seeram Ramakrishna,Mohamedazeem M. Mohideen,Kaili Li
Publisher : Academic Press
Release Date : 2019-08-09
ISBN 10 : 0128165979
Pages : 218 pages

Melt Electrospinning: A Green Method to Produce Superfine Fibers introduces the latest results from a leading research group in this area, exploring the structure, equipment polymer properties and spinning conditions of melt electrospinning. Sections introduce the invention of melt electrospinning, including the independent development of centrifugal melt electrospinning and upward melt electrospinning, discuss electro magnetization of melt and the testing method of fiber performance by means of different polymers and self-designed devices, cover simulation, and introduce principle methods and improvement measures of centrifugal melt electrospinning. Presents melt electrospinning, a green nanofiber fabrication technology Introduces the invention of melt electrospinning, including centrifugal melt electrospinning and upward melt electrospinning Describes optimization techniques, electro magnetization of melt, testing methods, DPD simulation and improvement methods Provides a useful introduction to contemporary electrospinning research with a view to its many potential applications

Advanced Nanofibrous Materials Manufacture Technology based on Electrospinning
Author : Yanbo Liu,Ce Wang
Publisher : CRC Press
Release Date : 2019-04-23
ISBN 10 : 0429532709
Pages : 480 pages

This book comprehensively addresses advanced nanofiber manufacturing based on electrospinning technology. The principles, relationships between process parameters and structure, morphology and performance of electrospun nanofibers and nanomaterials, and the methods for enhanced field intensity and uniform distribution are discussed. The electric field intensity and distribution during electrospinning is also analyzed based on finite element analysis on both the needle and the needleless electrospinning. Furthermore, the modification techniques for improved nanomaterials strength are covered, aiming to provide effective avenues towards the manufacture of stronger nanofiber or nanomaterial products.

Polypropylene Nanofibers
Author : Rajkishore Nayak
Publisher : Springer
Release Date : 2017-09-15
ISBN 10 : 3319614584
Pages : 190 pages

This book provides a comparison between melt electrospinning and meltblowing as techniques for the production of polypropylene nanofibers. The author compares the morphological, structural, chemical and mechanical characteristics of the different produced fibers. Moreover, the degree of thermal degradation of the different fibers is also analyzed. The book is useful to chemists and material scientists working on the synthesis of nanofibers by melt processes, showing the limitations of each technique for nanofiber fabrication.

Author : Geoffrey R Mitchell
Publisher : Royal Society of Chemistry
Release Date : 2015-04-29
ISBN 10 : 1849735573
Pages : 288 pages

Electrospinning techniques are used to produce novel nanoscale fibrous materials used in a diverse range of applications. Electrospinning: Principles Practice and Possibilities provides a snapshot of the current cutting edge developments of the field. The first chapter introduces readers to electrospinning, followed by different techniques to prepare fibres such as melt electrospinning and colloidal electrospinning, as well as the properties, structures and uses of the nanofibrous materials in energy applications and regenerative medicine and future directions. This balanced and authoritative book will appeal to a broad audience of postgraduate students, industrial and academic researchers in the physical and life sciences as well as engineering.

Green Electrospinning
Author : Nesrin Horzum,Mustafa M. Demir,Rafael Muñoz-Espí,Daniel Crespy
Publisher : Walter de Gruyter GmbH & Co KG
Release Date : 2019-07-22
ISBN 10 : 3110581396
Pages : 354 pages

The last two decades have seen electrospinning of nanofibers performed mainly from solutions of toxic organic solvents. The increase in demand for scaling up electrospinning in recent years therefore requires an environmentally friendly process free of organic solvents. This book addresses techniques for clean and safe electrospinning in the fabrication of green nanofibers and their potential applications.

Melt Electrospinning Using Polycaprolactone (PCL) Polymer for Various Applications
Author : Junghyuk Ko,University of Victoria (B.C.). Department of Mechanical Engineering
Publisher : N.A
Release Date : 2014
ISBN 10 :
Pages : 329 pages

This thesis presents a melt electrospinning technique to fabricate highly porous and controllable poly (?-caprolactone) (PCL) microfibers for tissue engineering applications and rehabilitation applications. Electrospinning without solvents via melt methods may be an attractive approach to tissue engineering of cell constructs where solvent accumulation or toxicity is an issue. This method is also able to produce microfibers with controllable parameters. However, the fiber diameters resulting from melt electrospinning processes are relatively large when compared to the fibers from solution electrospinning. The typical microfiber diameter from melt electrospinning was reported to be approximately 0.1mm. In order to further develop the melt electrospinning technique, we focused on the design of a melt electrospinning setup based on numerical analysis using the Solidworks 2013 simulation package and practically established a melt electrospinning setup and thermal control system for accurate experiments. One of main purposes of this thesis is the build-up of mathematical modeling to control and predict the electrospun microfiber via a more intricate understanding of their parameters such as the nozzle diameter, applied voltage, distance between the nozzle and counter electrode, temperature, flow rate, linear transitional speed, among others. The model is composed of three parts: 1) melt electrospinning process modeling, 2) fibrous helix movement modeling, and 3) build-up of microfibers modeling. The melt electrospinning process model describes an electric field, the shape of jet's continuously changing shape, and how the polymer melt is stretched into a Taylor cone and a straight jet.

Advancing Melt Electrospinning Writing for Fabrication of Biomimetic Structures
Author : Gernot Hochleitner
Publisher : N.A
Release Date : 2018
ISBN 10 :
Pages : 329 pages

Modeling 3D Melt Electrospinning Writing by Response Surface Methodology
Author : N.A
Publisher : N.A
Release Date : 2018
ISBN 10 :
Pages : 329 pages

Abstract: Three-dimensional (3D) melt electrospinning writing (MEW) is a promising technique for 3D printing of porous scaffolds with well-defined geometrical features. The diameter of electrospun fibers strongly affect the achievable resolution and consequently several other physical, mechanical, and structural properties of the fabricated scaffold. However, there are a few process parameters which significantly affect the size of electrospun fibers. In this study, response surface methodology (RSM) was used to investigate the critical and optimized process parameters and their interaction effects on the desired fiber diameter. Four process parameters, including collector speed, tip-to-collector distance, applied pressure, and voltage were studied considering their practical ranges. The results showed that all the parameters except the applied voltage had a significant effect on the printed fiber diameters. A generalized model for the interaction effects of the parameters was introduced which can be used as a framework for selecting the process parameters to achieve the desired fiber diameter. The developed model was validated by choosing random process parameters and printing three-dimensional scaffolds. The results confirm that the predicted fiber diameters match closely with the actual fiber diameters measured directly from the printed scaffold. Graphical abstract: Highlights: Response Surface Methodology was applied to model 3D Melt Electrospinning Writing. Effective process parameters including feed rate, tip-to-collector distance, applied pressure, and voltage were considered. Model equation was developed to explain the relationship between fiber diameter and process parameters. The obtained model was statistically examined and experimentally validated.

An Introduction to Electrospinning and Nanofibers
Author : Seeram Ramakrishna
Publisher : World Scientific
Release Date : 2005
ISBN 10 : 9812564152
Pages : 382 pages

The research and development of nanofibers has gained much prominence in recent years due to the heightened awareness of its potential applications in the medical, engineering and defense fields. Among the most successful methods for producing nanofibers is the electrospinning process. In this timely book, the areas of electrospinning and nanofibers are covered for the first time in a single volume. The book can be broadly divided into two parts: the first comprises descriptions of the electrospinning process and modeling to obtain nanofibers while the second describes the characteristics and applications of nanofibers. The material is aimed at both newcomers and experienced researchers in the area.

Advanced Polymer Processing III
Author : Wei Min Yang
Publisher : Trans Tech Publications Ltd
Release Date : 2013-07-15
ISBN 10 : 3038261025
Pages : 734 pages

Volume is indexed by Thomson Reuters CPCI-S (WoS). The book aims to exchange and share a number of experts and scholars’s experiences and research results about all aspects of polymer processing and modification technology; modern mold technology; rapid prototyping technology, automobiles, home appliances, electronic and aviation materials processing; materials processing simulation technology; molding equipment and process data acquisition and monitoring and other areas of new concepts. The book further enhance the interrelationships between realms of processing equipment, molding technology, mold design, mold manufacture and materials modification, to raise the application level for polymer and composite material in technologies such as cash manufacturing.

Progress in Polymer Processing
Author : Chi Zhang
Publisher : Trans Tech Publications Ltd
Release Date : 2012-01-24
ISBN 10 : 3038136875
Pages : 620 pages

The Asian Workshop on Polymer Processing 2011(AWPP2011), organized by JSPP, SAMP and the China Science Foundation, was hosted by Qingdao University of Science and Technology in Qingdao, China from November 4 to 7th, 2011. Volume is indexed by Thomson Reuters CPCI-S (WoS). Numerous leading experts on polymer materials and processing presented their recent research finding at the meeting, and the result is an invaluable state-of-the-art guide to the subject.

Technology and Innovation for Sustainable Development
Author : Rattikorn Yimnirun
Publisher : Trans Tech Publications Ltd
Release Date : 2016-07-27
ISBN 10 : 3035701172
Pages : 282 pages

In present book collected papers by results of researches which were presented on the conference “The 6th RMUTP International Conference on Science, Technology and Innovation for Sustainable Development: Current Challenges towards Creative and Green Economy”. The conference topic was with emphasizing on use of ideas of the sustainable development and green growth in research and engineering solutions for creating of innovative technologies in area of sustainability engineering, textiles and clothing industry, education and industrial engineering.

Melt-electrospinning of Thermoplastic Polymers
Author : Jason Michael Lyons,Frank K. Ko
Publisher : N.A
Release Date : 2004
ISBN 10 : 9780496079704
Pages : 196 pages

Micro-Nano Technology XVI
Author : Fei Tang
Publisher : Trans Tech Publications Ltd
Release Date : 2015-05-18
ISBN 10 : 3038269239
Pages : 1426 pages

Collection of selected, peer reviewed papers from the 16th Annual Conference and 5th International Conference of the Chinese Society of Micro-Nano Technology (CSMNT 2014), August 31-September 3, 2014, Chengdu, China. The 226 papers are grouped as follows: Chapter 1: Materials and Technologies in the Scale of Micro and Nano; Chapter 2: Micro/Nanofluids Research and Technologies; Chapter 3: Measurements, Sensors and MEMS; Chapter 4: Micro Actuators and Devices; Chapter 5: Optics in the Scale of Micro and Nano; Chapter 6: Energy Harvesting, Power Supply and Technologies for Fuel Cells; Chapter 7: Bioresearch and Biomedical Engineering

Electrospun Fibers from Both Solution and Melt
Author : Huajun Zhou
Publisher : N.A
Release Date : 2007
ISBN 10 :
Pages : 338 pages

The third system is an extension from melt electrospinning, which is heated solution electrospinning of polyolefin. We explored the possibilities of electrospinning sub-micron polyolefin fibers directly from their solutions and investigated the effects of processing parameters on fiber morphologies and properties.

Electrospun Nanofibers for Energy and Environmental Applications
Author : Bin Ding,Jianyong Yu
Publisher : Springer Science & Business Media
Release Date : 2014-04-10
ISBN 10 : 3642541607
Pages : 525 pages

This book offers a comprehensive review of the latest advances in developing functional electrospun nanofibers for energy and environmental applications, which include fuel cells, lithium-ion batteries, solar cells, supercapacitors, energy storage materials, sensors, filtration materials, protective clothing, catalysis, structurally-colored fibers, oil spill cleanup, self-cleaning materials, adsorbents, and electromagnetic shielding. This book is aimed at both newcomers and experienced researchers in the field of nanomaterials, especially those who are interested in addressing energy-related and environmental problems with the help of electrospun nanofibers. Bin Ding, PhD, and Jianyong Yu, PhD, are both Professors at the College of Materials Science and Engineering, Donghua University, China.

Nanomaterials Handbook
Author : Yury Gogotsi
Publisher : CRC Press
Release Date : 2006-01-26
ISBN 10 : 1420004018
Pages : 800 pages

Even before it was identified as a science and given a name, nanotechnology was the province of the most innovative inventors. In medieval times, craftsmen, ingeniously employing nanometer-sized gold particles, created the enchanting red hues found in the gold ruby glass of cathedral windows. Today, nanomaterials are being just as creatively used to improve old products, as well as usher in new ones. From tires to CRTs to sunscreens, nanomaterials are becoming a part of every industry. The Nanomaterials Handbook provides a comprehensive overview of the current state of nanomaterials. Employing terminology familiar to materials scientists and engineers, it provides an introduction that delves into the unique nature of nanomaterials. Looking at the quantum effects that come into play and other characteristics realized at the nano level, it explains how the properties displayed by nanomaterials can differ from those displayed by single crystals and conventional microstructured, monolithic, or composite materials. The introduction is followed by an in-depth investigation of carbon-based nanomaterials, which are as important to nanotechnology as silicon is to electronics. However, it goes beyond the usual discussion of nanotubes and nanofibers to consider graphite whiskers, cones and polyhedral crystals, and nanocrystalline diamonds. It also provides significant new information with regard to nanostructured semiconductors, ceramics, metals, biomaterials, and polymers, as well as nanotechnology’s application in drug delivery systems, bioimplants, and field-emission displays. The Nanomaterials Handbook is edited by world-renowned nanomaterials scientist Yury Gogotsi, who has recruited his fellow-pioneers from academia, national laboratories, and industry, to provide coverage of the latest material developments in America, Asia, Europe, and Australia.

Nanotubes and Nanofibers
Author : Yury Gogotsi
Publisher : CRC Press
Release Date : 2006-06-20
ISBN 10 : 1420009389
Pages : 264 pages

Size, Shape, and Synthesis Key to “Tuning” Properties The discovery and rapid evolution of carbon nanotubes have led to a vastly improved understanding of nanotechnology, as well as dozens of possible applications for nanomaterials of different shapes and sizes ranging from composites to biology, medicine, energy, transportation, and electronic devices. Nanotubes and Nanofibers offers an overview of structure–property relationships, synthesis and purification, and potential applications of carbon nanotubes and fibers, including whiskers, cones, nanobelts, and nanowires. Using research on carbon nanotubes as a foundation to further developments, this book discusses methods for growing and synthesizing amorphous and nanocrystalline graphitic carbon structures and inorganic nanomaterials, including wet chemical synthesis, chemical vapor deposition (CVD), arc discharge, and others. It also describes boron nitride and metal chalcogenide nanotubes in detail and reviews the unique properties and methods for characterizing and producing single-crystalline semiconducting and functional-oxide nanowires. The chapters also identify challenges involving the controlled growth, processing, and assembly of organic and inorganic nanostructures that must be addressed before large-scale applications can be implemented. Edited by award-winning professor and researcher Dr. Yury Gogotsi, Nanotubes and Nanofibers offers a well-rounded perspective on the advances leading to improved nanomaterial properties for a range of new devices and applications including electronic devices, structural composites, hydrogen and gas storage, electrodes in electrochemical energy-storage systems, sorbents, and filters.

Advances in Filament Yarn Spinning of Textiles and Polymers
Author : Dong Zhang
Publisher : Elsevier
Release Date : 2014-02-15
ISBN 10 : 0857099175
Pages : 230 pages

Advances in Filament Yarn Spinning of Textiles and Polymers reviews the different types of spinning techniques for synthetic polymer-based fibers, and issues such as their effect on fiber properties, including melt, dry, wet, and gel spinning. Synthetic polymer-based fibers are used in a great variety of consumer and industrial textile applications ranging from clothing to home furnishings to surgical procedures. This book explores how a wide array of spinning techniques can be applied in the textile industry. Part one considers the fundamental structure and properties of fibers that determine their behavior during spinning. The book then discusses developments in technologies for manufacturing synthetic polymer films to produce different fibers with specialized properties. Part two focuses on spinning techniques, including the benefits and limitations of melt spinning and the use of gel spinning to produce high-strength and high-elastic fibers. These chapters focus specifically on developments in bi-component, bi-constituent, and electro-spinning, in particular the fabrication of nanocomposite fibers. The final chapters review integrated composite spinning of yarns and the principles of wet and dry spinning. This collection is an important reference for a wide range of industrial textile technologists, including spinners, fabric and garment manufacturers, and students of textile technology. It is also of great interest for polymer scientists. Reviews the different spinning techniques and issues such as their effect on fiber properties, including melt, dry, wet, and gel spinning Considers the fundamental structure and properties of fibers that determine their behavior during spinning Reviews integrated composite spinning of yarns and the principles of wet and dry spinning

Fundamentals and Applications of Micro and Nanofibers
Author : Alexander L. Yarin,Behnam Pourdeyhimi,Seeram Ramakrishna
Publisher : Cambridge University Press
Release Date : 2014-05-08
ISBN 10 : 110706029X
Pages : 453 pages

A comprehensive exposition of micro and nanofiber formation processes, from physical foundations to production and applications.