Author | : Panagiotis Symeonidis,Andreas Zioupos |

Publisher | : Springer |

Release Date | : 2017-01-29 |

ISBN 10 | : 3319413570 |

Pages | : 102 pages |

This book presents the algorithms used to provide recommendations by exploiting matrix factorization and tensor decomposition techniques. It highlights well-known decomposition methods for recommender systems, such as Singular Value Decomposition (SVD), UV-decomposition, Non-negative Matrix Factorization (NMF), etc. and describes in detail the pros and cons of each method for matrices and tensors. This book provides a detailed theoretical mathematical background of matrix/tensor factorization techniques and a step-by-step analysis of each method on the basis of an integrated toy example that runs throughout all its chapters and helps the reader to understand the key differences among methods. It also contains two chapters, where different matrix and tensor methods are compared experimentally on real data sets, such as Epinions, GeoSocialRec, Last.fm, BibSonomy, etc. and provides further insights into the advantages and disadvantages of each method. The book offers a rich blend of theory and practice, making it suitable for students, researchers and practitioners interested in both recommenders and factorization methods. Lecturers can also use it for classes on data mining, recommender systems and dimensionality reduction methods.

Author | : Christian Jutten |

Publisher | : N.A |

Release Date | : |

ISBN 10 | : 9780128157602 |

Pages | : 329 pages |

Author | : Andrzej Cichocki,Rafal Zdunek,Anh Huy Phan,Shun-ichi Amari |

Publisher | : John Wiley & Sons |

Release Date | : 2009-07-10 |

ISBN 10 | : 9780470747285 |

Pages | : 500 pages |

This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF’s various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components with physical interpretations; for example, in bioinformatics, NMF and its extensions have been successfully applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining. As such, the authors focus on the algorithms that are most useful in practice, looking at the fastest, most robust, and suitable for large-scale models. Key features: Acts as a single source reference guide to NMF, collating information that is widely dispersed in current literature, including the authors’ own recently developed techniques in the subject area. Uses generalized cost functions such as Bregman, Alpha and Beta divergences, to present practical implementations of several types of robust algorithms, in particular Multiplicative, Alternating Least Squares, Projected Gradient and Quasi Newton algorithms. Provides a comparative analysis of the different methods in order to identify approximation error and complexity. Includes pseudo codes and optimized MATLAB source codes for almost all algorithms presented in the book. The increasing interest in nonnegative matrix and tensor factorizations, as well as decompositions and sparse representation of data, will ensure that this book is essential reading for engineers, scientists, researchers, industry practitioners and graduate students across signal and image processing; neuroscience; data mining and data analysis; computer science; bioinformatics; speech processing; biomedical engineering; and multimedia.

Author | : Favier |

Publisher | : Wiley-Blackwell |

Release Date | : 2018-11-20 |

ISBN 10 | : 9781786301550 |

Pages | : 200 pages |

Author | : Ankur Moitra |

Publisher | : Cambridge University Press |

Release Date | : 2018-09-27 |

ISBN 10 | : 1107184584 |

Pages | : 176 pages |

Introduces cutting-edge research on machine learning theory and practice, providing an accessible, modern algorithmic toolkit.

Author | : Majid Janzamin,Rong Ge,Jean Kossaifi,Anima Anandkumar |

Publisher | : N.A |

Release Date | : 2019-11-25 |

ISBN 10 | : 9781680836400 |

Pages | : 156 pages |

The authors of this monograph survey recent progress in using spectral methods including matrix and tensor decomposition techniques to learn many popular latent variable models. With careful implementation, tensor-based methods can run efficiently in practice, and in many cases they are the only algorithms with provable guarantees on running time and sample complexity. The focus is on a special type of tensor decomposition called CP decomposition, and the authors cover a wide range of algorithms to find the components of such tensor decomposition. They also discuss the usefulness of this decomposition by reviewing several probabilistic models that can be learned using such tensor methods. The second half of the monograph looks at practical applications. This includes using Tensorly, an efficient tensor algebra software package, which has a simple python interface for expressing tensor operations. It also has a flexible back-end system supporting NumPy, PyTorch, TensorFlow, and MXNet. Spectral Learning on Matrices and Tensors provides a theoretical and practical introduction to designing and deploying spectral learning on both matrices and tensors. It is of interest for all students, researchers and practitioners working on modern day machine learning problems.

Author | : Ferre Knaepkens |

Publisher | : N.A |

Release Date | : 2017 |

ISBN 10 | : |

Pages | : 329 pages |

This thesis studies three different subjects, namely tensors and tensor decomposition, sparse interpolation and Pad\'e or rational approximation theory. These problems find their origin in various fields within mathematics: on the one hand tensors originate from algebra and are of importance in computer science and knowledge technology, while on the other hand sparse interpolation and Pad\'e approximations stem from approximation theory. Although all three problems seem totally unrelated, they are deeply intertwined. The connection between them is exactly he goal of this thesis. These connections are of importance since they allow us to solve the symmetric tensor decomposition problem by means of a corresponding sparse interpolation problem or an appropriate Pad\'e approximant. The first section gives a short introduction on tensors. Here, starting from the points of view of matrices and vectors, a generalization is made to tensors. Also a link is made to other known concepts within matrix-algebra. Subsequently, three definitions of tensor rank are discussed. The first definition is the most general and is based on the decomposition by means of the outer product of vectors. The second definition is only applicable for symmetric tensors and is based on a decomposition by means of symmetric outer products of vectors. Finally, the last definition is also only applicable for symmetric tensors and is based o the decomposition of a related homogeneous polynomial. It can be shown that these last two definitions are equal and they are also the only definitions used in the continuation of the thesis. In particular, this last definition since it supplies the connection with approximation theory. Finally, a well-known method (ALS) to find these tensor decompositions is shortly discussed. However, ALS has some shortcomings en that is exactly the reason that the connections to approximation theory are of such importance. Sections two and three discuss the first problem of both within approximation theory, namely sparse interpolation. In the second section, The univariate problem is considered. This problem can be solved with Prony's method, which consists of finding the zeroes of a related polynomial or solving a generalized eigenvalue problem. The third section continues on the second since it discusses multivariate sparse interpolation. Prony's method for the univariate case is changed to also provide a solution for the multivariate problem. The fourth and fifth section have as subject Pad\'e or rational approximation theory. Like the name suggests, it consists of approximating a power series by a rational function. Section four first introduces univariate Pad\'e approximants and states some important properties of them. Here, shortly the connection is made with continued fraction to use this theory later on. Finally, some methods to find Pad\'e approximants are discussed, namely the Levinson algorithm, the determinant formulas and the qd-algorithm. Section five continues on section four and discusses multivariate Pad\'e approximation theory. It is shown that a shift of the univariate conditions occurs, however, despite this shift still a lot of the important properties of the univariate case remain true. Also an extension of the qd-algorithm for multivariate Pad\'e approximants is discussed. Section six bundles all previous sections to expose the connections between the three seemingly different problems. The discussion of these connections is done in two steps in the univariate case, first the tensor decomposition problem is rewritten as a sparse interpolation problem and subsequently, it is shown that the sparse interpolation problem can be solved by means of Pad\'e approximants. In the multivariate case, also the connection between tensor decomposition and sparse interpolation is discussed first. Subsequently, a parameterized approach is introduces, which converts the multivariate problem to a parameterized univariate problem such that the connections of the first part apply. This parameterized approach also lead to the connection between tensor decomposition, multivariate sparse interpolation and multivariate Pad\'e approximation theory. The last or seventh section consists of two examples, a univariate problem and a multivariate one. The techniques of previous sections are used to demonstrate the connections of section six. This section also serves as illustration of the methods of sections two until five to solve sparse interpolation and Pad\'e approximation problems.

Author | : Santiago Aja-Fernández,Rodrigo de Luis Garcia,Dacheng Tao,Xuelong Li |

Publisher | : Springer Science & Business Media |

Release Date | : 2009-05-21 |

ISBN 10 | : 1848822995 |

Pages | : 470 pages |

Tensor signal processing is an emerging field with important applications to computer vision and image processing. This book presents the state of the art in this new branch of signal processing, offering a great deal of research and discussions by leading experts in the area. The wide-ranging volume offers an overview into cutting-edge research into the newest tensor processing techniques and their application to different domains related to computer vision and image processing. This comprehensive text will prove to be an invaluable reference and resource for researchers, practitioners and advanced students working in the area of computer vision and image processing.

Author | : David P. Woodruff |

Publisher | : Now Publishers |

Release Date | : 2014-11-14 |

ISBN 10 | : 9781680830040 |

Pages | : 168 pages |

Sketching as a Tool for Numerical Linear Algebra highlights the recent advances in algorithms for numerical linear algebra that have come from the technique of linear sketching, whereby given a matrix, one first compressed it to a much smaller matrix by multiplying it by a (usually) random matrix with certain properties. Much of the expensive computation can then be performed on the smaller matrix, thereby accelerating the solution for the original problem. It is an ideal primer for researchers and students of theoretical computer science interested in how sketching techniques can be used to speed up numerical linear algebra applications.

Author | : J. Cullum,R.A. Willoughby |

Publisher | : Elsevier |

Release Date | : 1986-01-01 |

ISBN 10 | : 9780080872384 |

Pages | : 329 pages |

Results of research into large scale eigenvalue problems are presented in this volume. The papers fall into four principal categories: novel algorithms for solving large eigenvalue problems, novel computer architectures, computationally-relevant theoretical analyses, and problems where large scale eigenelement computations have provided new insight.

Author | : Luca Chiantini |

Publisher | : MDPI |

Release Date | : 2019-02-15 |

ISBN 10 | : 3038975907 |

Pages | : 160 pages |

This book is a printed edition of the Special Issue "Decomposability of Tensors" that was published in Mathematics

Author | : Qiquan Shi |

Publisher | : N.A |

Release Date | : 2018 |

ISBN 10 | : |

Pages | : 218 pages |

Feature extraction and tensor recovery problems are important yet challenging, particularly for multi-dimensional data with missing values and/or noise. Low-rank tensor decomposition approaches are widely used for solving these problems. This thesis focuses on three common tensor decompositions (CP, Tucker and t-SVD) and develops a set of decomposition-based approaches. The proposed methods aim to extract low-dimensional features from complete/incomplete data and recover tensors given partial and/or grossly corrupted observations.