Author | : Fabrizio Gabbiani,Steven James Cox |

Publisher | : Academic Press |

Release Date | : 2017-03-21 |

ISBN 10 | : 0128019069 |

Pages | : 628 pages |

Mathematics for Neuroscientists, Second Edition, presents a comprehensive introduction to mathematical and computational methods used in neuroscience to describe and model neural components of the brain from ion channels to single neurons, neural networks and their relation to behavior. The book contains more than 200 figures generated using Matlab code available to the student and scholar. Mathematical concepts are introduced hand in hand with neuroscience, emphasizing the connection between experimental results and theory. Fully revised material and corrected text Additional chapters on extracellular potentials, motion detection and neurovascular coupling Revised selection of exercises with solutions More than 200 Matlab scripts reproducing the figures as well as a selection of equivalent Python scripts

Author | : G. Bard Ermentrout,David H. Terman |

Publisher | : Springer Science & Business Media |

Release Date | : 2010-07-01 |

ISBN 10 | : 0387877088 |

Pages | : 422 pages |

This book applies methods from nonlinear dynamics to problems in neuroscience. It uses modern mathematical approaches to understand patterns of neuronal activity seen in experiments and models of neuronal behavior. The intended audience is researchers interested in applying mathematics to important problems in neuroscience, and neuroscientists who would like to understand how to create models, as well as the mathematical and computational methods for analyzing them. The authors take a very broad approach and use many different methods to solve and understand complex models of neurons and circuits. They explain and combine numerical, analytical, dynamical systems and perturbation methods to produce a modern approach to the types of model equations that arise in neuroscience. There are extensive chapters on the role of noise, multiple time scales and spatial interactions in generating complex activity patterns found in experiments. The early chapters require little more than basic calculus and some elementary differential equations and can form the core of a computational neuroscience course. Later chapters can be used as a basis for a graduate class and as a source for current research in mathematical neuroscience. The book contains a large number of illustrations, chapter summaries and hundreds of exercises which are motivated by issues that arise in biology, and involve both computation and analysis. Bard Ermentrout is Professor of Computational Biology and Professor of Mathematics at the University of Pittsburgh. David Terman is Professor of Mathematics at the Ohio State University.

Author | : David Sulzer |

Publisher | : Columbia University Press |

Release Date | : 2021-04-27 |

ISBN 10 | : 0231550502 |

Pages | : 329 pages |

Why does a clarinet play at lower pitches than a flute? What does it mean for sounds to be in or out of tune? How are emotions carried by music? Do other animals perceive sound like we do? How might a musician use math to come up with new ideas? This book offers a lively exploration of the mathematics, physics, and neuroscience that underlie music in a way that readers without scientific background can follow. David Sulzer, also known in the musical world as Dave Soldier, explains why the perception of music encompasses the physics of sound, the functions of the ear and deep-brain auditory pathways, and the physiology of emotion. He delves into topics such as the math by which musical scales, rhythms, tuning, and harmonies are derived, from the days of Pythagoras to technological manipulation of sound waves. Sulzer ranges from styles from around the world to canonical composers to hip-hop, the history of experimental music, and animal sound by songbirds, cetaceans, bats, and insects. He makes accessible a vast range of material, helping readers discover the universal principles behind the music they find meaningful. Written for musicians and music lovers with any level of science and math proficiency, including none, Music, Math, and Mind demystifies how music works while testifying to its beauty and wonder.

Author | : Pascal Wallisch,Michael E. Lusignan,Marc D. Benayoun,Tanya I. Baker,Adam Seth Dickey,Nicholas G. Hatsopoulos |

Publisher | : Academic Press |

Release Date | : 2014-01-09 |

ISBN 10 | : 0123838371 |

Pages | : 570 pages |

MATLAB for Neuroscientists serves as the only complete study manual and teaching resource for MATLAB, the globally accepted standard for scientific computing, in the neurosciences and psychology. This unique introduction can be used to learn the entire empirical and experimental process (including stimulus generation, experimental control, data collection, data analysis, modeling, and more), and the 2nd Edition continues to ensure that a wide variety of computational problems can be addressed in a single programming environment. This updated edition features additional material on the creation of visual stimuli, advanced psychophysics, analysis of LFP data, choice probabilities, synchrony, and advanced spectral analysis. Users at a variety of levels—advanced undergraduates, beginning graduate students, and researchers looking to modernize their skills—will learn to design and implement their own analytical tools, and gain the fluency required to meet the computational needs of neuroscience practitioners. The first complete volume on MATLAB focusing on neuroscience and psychology applications Problem-based approach with many examples from neuroscience and cognitive psychology using real data Illustrated in full color throughout Careful tutorial approach, by authors who are award-winning educators with strong teaching experience

Author | : Roi Kadosh,Ann Dowker |

Publisher | : OUP Oxford |

Release Date | : 2015-07-30 |

ISBN 10 | : 0191036005 |

Pages | : 1144 pages |

How do we understand numbers? Do animals and babies have numerical abilities? Why do some people fail to grasp numbers, and how we can improve numerical understanding? Numbers are vital to so many areas of life: in science, economics, sports, education, and many aspects of everyday life from infancy onwards. Numerical cognition is a vibrant area that brings together scientists from different and diverse research areas (e.g., neuropsychology, cognitive psychology, developmental psychology, comparative psychology, anthropology, education, and neuroscience) using different methodological approaches (e.g., behavioral studies of healthy children and adults and of patients; electrophysiology and brain imaging studies in humans; single-cell neurophysiology in non-human primates, habituation studies in human infants and animals, and computer modeling). While the study of numerical cognition had been relatively neglected for a long time, during the last decade there has been an explosion of studies and new findings. This has resulted in an enormous advance in our understanding of the neural and cognitive mechanisms of numerical cognition. In addition, there has recently been increasing interest and concern about pupils' mathematical achievement in many countries, resulting in attempts to use research to guide mathematics instruction in schools, and to develop interventions for children with mathematical difficulties. This handbook brings together the different research areas that make up the field of numerical cognition in one comprehensive and authoritative volume. The chapters provide a broad and extensive review that is written in an accessible form for scholars and students, as well as educationalists, clinicians, and policy makers. The book covers the most important aspects of research on numerical cognition from the areas of development psychology, cognitive psychology, neuropsychology and rehabilitation, learning disabilities, human and animal cognition and neuroscience, computational modeling, education and individual differences, and philosophy. Containing more than 60 chapters by leading specialists in their fields, the Oxford Handbook of Numerical Cognition is a state-of-the-art review of the current literature.

Author | : Gabriele Kaiser |

Publisher | : Springer |

Release Date | : 2017-10-31 |

ISBN 10 | : 3319625977 |

Pages | : 766 pages |

This book is open access under a CC BY 4.0 license. The book presents the Proceedings of the 13th International Congress on Mathematical Education (ICME-13) and is based on the presentations given at the 13th International Congress on Mathematical Education (ICME-13). ICME-13 took place from 24th- 31st July 2016 at the University of Hamburg in Hamburg (Germany). The congress was hosted by the Society of Didactics of Mathematics (Gesellschaft für Didaktik der Mathematik - GDM) and took place under the auspices of the International Commission on Mathematical Instruction (ICMI). ICME-13 brought together about 3.500 mathematics educators from 105 countries, additionally 250 teachers from German speaking countries met for specific activities. Directly before the congress activities were offered for 450 Early Career Researchers. The proceedings give a comprehensive overview on the current state-of-the-art of the discussions on mathematics education and display the breadth and deepness of current research on mathematical teaching-and-learning processes. The book introduces the major activities of ICME-13, namely articles from the four plenary lecturers and two plenary panels, articles from the five ICMI awardees, reports from six national presentations, three reports from the thematic afternoon devoted to specific features of ICME-13. Furthermore, the proceedings contain descriptions of the 54 Topic Study Groups, which formed the heart of the congress and reports from 29 Discussion Groups and 31 Workshops. The additional important activities of ICME-13, namely papers from the invited lecturers, will be presented in the second volume of the proceedings.

Author | : Henry C. Tuckwell |

Publisher | : SIAM |

Release Date | : 1989-01-01 |

ISBN 10 | : 9781611970159 |

Pages | : 129 pages |

This monograph is centered on quantitative analysis of nerve-cell behavior. The work is foundational, with many higher order problems still remaining, especially in connection with neural networks. Thoroughly addressed topics include stochastic problems in neurobiology, and the treatment of the theory of related Markov processes.

Author | : Erik De Schutter |

Publisher | : CRC Press |

Release Date | : 2000-11-22 |

ISBN 10 | : 1420039296 |

Pages | : 368 pages |

Designed primarily as an introduction to realistic modeling methods, Computational Neuroscience: Realistic Modeling for Experimentalists focuses on methodological approaches, selecting appropriate methods, and identifying potential pitfalls. The author addresses varying levels of complexity, from molecular interactions within single neurons to the

Author | : J. Leo van Hemmen,Terrence J. Sejnowski |

Publisher | : Oxford University Press on Demand |

Release Date | : 2006-01 |

ISBN 10 | : 0195148223 |

Pages | : 514 pages |

The complexity of the brain and the protean nature of behavior remain the most elusive area of science, but also the most important. van Hemmen and Sejnowski invited 23 experts from the many areas--from evolution to qualia--of systems neuroscience to formulate one problem each. Although each chapter was written independently and can be read separately, together they provide a useful roadmap to the field of systems neuroscience and will serve as a source of inspirations for future explorers of the brain.

Author | : Jo Boaler |

Publisher | : John Wiley & Sons |

Release Date | : 2015-10-12 |

ISBN 10 | : 1118418271 |

Pages | : 320 pages |

Banish math anxiety and give students of all ages a clear roadmap to success Mathematical Mindsets provides practical strategies and activities to help teachers and parents show all children, even those who are convinced that they are bad at math, that they can enjoy and succeed in math. Jo Boaler—Stanford researcher, professor of math education, and expert on math learning—has studied why students don't like math and often fail in math classes. She's followed thousands of students through middle and high schools to study how they learn and to find the most effective ways to unleash the math potential in all students. There is a clear gap between what research has shown to work in teaching math and what happens in schools and at home. This book bridges that gap by turning research findings into practical activities and advice. Boaler translates Carol Dweck's concept of 'mindset' into math teaching and parenting strategies, showing how students can go from self-doubt to strong self-confidence, which is so important to math learning. Boaler reveals the steps that must be taken by schools and parents to improve math education for all. Mathematical Mindsets: Explains how the brain processes mathematics learning Reveals how to turn mistakes and struggles into valuable learning experiences Provides examples of rich mathematical activities to replace rote learning Explains ways to give students a positive math mindset Gives examples of how assessment and grading policies need to change to support real understanding Scores of students hate and fear math, so they end up leaving school without an understanding of basic mathematical concepts. Their evasion and departure hinders math-related pathways and STEM career opportunities. Research has shown very clear methods to change this phenomena, but the information has been confined to research journals—until now. Mathematical Mindsets provides a proven, practical roadmap to mathematics success for any student at any age.

Author | : Liqun Luo |

Publisher | : Garland Science |

Release Date | : 2020-09-05 |

ISBN 10 | : 1000096807 |

Pages | : 734 pages |

Principles of Neurobiology, Second Edition presents the major concepts of neuroscience with an emphasis on how we know what we know. The text is organized around a series of key experiments to illustrate how scientific progress is made and helps upper-level undergraduate and graduate students discover the relevant primary literature. Written by a single author in a clear and consistent writing style, each topic builds in complexity from electrophysiology to molecular genetics to systems level in a highly integrative approach. Students can fully engage with the content via thematically linked chapters and will be able to read the book in its entirety in a semester-long course. Principles of Neurobiology is accompanied by a rich package of online student and instructor resources including animations, figures in PowerPoint, and a Question Bank for adopting instructors.

Author | : Wulfram Gerstner,Werner M. Kistler,Richard Naud,Liam Paninski |

Publisher | : Cambridge University Press |

Release Date | : 2014-07-24 |

ISBN 10 | : 1107060834 |

Pages | : 590 pages |

This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.