machine learning and internet of medical things in healthcare

Download Machine Learning And Internet Of Medical Things In Healthcare ebooks in PDF, epub, tuebl, textbook from Skinvaders.Com. Read online Machine Learning And Internet Of Medical Things In Healthcare books on any device easily. We cannot guarantee that Machine Learning And Internet Of Medical Things In Healthcare book is available. Click download or Read Online button to get book, you can choose FREE Trial service. READ as many books as you like (Personal use).

Machine Learning and the Internet of Medical Things in Healthcare
Author : Krishna Kant Singh,Mohamed Elhoseny,Akansha Singh,Ahmed A. Elngar
Publisher : Academic Press
Release Date : 2021-04-26
ISBN 10 : 012823217X
Pages : 290 pages

Machine Learning and the Internet of Medical Things in Healthcare discusses the applications and challenges of machine learning for healthcare applications. The book provides a platform for presenting machine learning-enabled healthcare techniques and offers a mathematical and conceptual background of the latest technology. It describes machine learning techniques along with the emerging platform of the Internet of Medical Things used by practitioners and researchers worldwide. The book includes deep feed forward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology. It also presents the concepts of the Internet of Things, the set of technologies that develops traditional devices into smart devices. Finally, the book offers research perspectives, covering the convergence of machine learning and IoT. It also presents the application of these technologies in the development of healthcare frameworks. Provides an introduction to the Internet of Medical Things through the principles and applications of machine learning Explains the functions and applications of machine learning in various applications such as ultrasound imaging, biomedical signal processing, robotics, and biomechatronics Includes coverage of the evolution of healthcare applications with machine learning, including Clinical Decision Support Systems, artificial intelligence in biomedical engineering, and AI-enabled connected health informatics, supported by real-world case studies

Cognitive Internet of Medical Things for Smart Healthcare
Author : Aboul Ella Hassanien
Publisher : Springer Nature
Release Date :
ISBN 10 : 3030558339
Pages : 329 pages

Medical Big Data and Internet of Medical Things
Author : Aboul Ella Hassanien,Nilanjan Dey,Surekha Borra
Publisher : CRC Press
Release Date : 2018-10-25
ISBN 10 : 1351030361
Pages : 340 pages

Big data and the Internet of Things (IoT) play a vital role in prediction systems used in biological and medical applications, particularly for resolving issues related to disease biology at different scales. Modelling and integrating medical big data with the IoT helps in building effective prediction systems for automatic recommendations of diagnosis and treatment. The ability to mine, process, analyse, characterize, classify and cluster a variety and wide volume of medical data is a challenging task. There is a great demand for the design and development of methods dealing with capturing and automatically analysing medical data from imaging systems and IoT sensors. Addressing analytical and legal issues, and research on integration of big data analytics with respect to clinical practice and clinical utility, architectures and clustering techniques for IoT data processing, effective frameworks for removal of misclassified instances, practicality of big data analytics, methodological and technical issues, potential of Hadoop in managing healthcare data is the need of the hour. This book integrates different aspects used in the field of healthcare such as big data, IoT, soft computing, machine learning, augmented reality, organs on chip, personalized drugs, implantable electronics, integration of bio-interfaces, and wearable sensors, devices, practical body area network (BAN) and architectures of web systems. Key Features: Addresses various applications of Medical Big Data and Internet of Medical Things in real time environment Highlights recent innovations, designs, developments and topics of interest in machine learning techniques for classification of medical data Provides background and solutions to existing challenges in Medical Big Data and Internet of Medical Things Provides optimization techniques and programming models to parallelize the computationally intensive tasks in data mining of medical data Discusses interactions, advantages, limitations, challenges and future perspectives of IoT based remote healthcare monitoring systems. Includes data privacy and security analysis of cryptography methods for the Web of Medical Things (WoMT) Presents case studies on the next generation medical chair, electronic nose and pill cam are also presented.

Internet of Medical Things
Author : D. Jude Hemanth
Publisher : Springer Nature
Release Date :
ISBN 10 : 3030639371
Pages : 329 pages

Incorporating the Internet of Things in Healthcare Applications and Wearable Devices
Author : Pankajavalli, P. B.,Karthick, G. S.
Publisher : IGI Global
Release Date : 2019-10-11
ISBN 10 : 1799810917
Pages : 288 pages

The internet of things (IoT) has had a major impact on academic and industrial fields. Applying these technologies to healthcare systems reduces medical costs while enriching the patient-centric approach to medicine, allowing for better overall healthcare proficiency. However, usage of IoT in healthcare is still suffering from significant challenges with respect to the cost and accuracy of medical sensors, non-standard IoT system architectures, assorted wearable devices, the huge volume of generated data, and interoperability issues. Incorporating the Internet of Things in Healthcare Applications and Wearable Devices is an essential publication that examines existing challenges and provides solutions for building smart healthcare systems with the latest IoT-enabled technology and addresses how IoT improves the proficiency of healthcare with respect to wireless sensor networks. While highlighting topics including mobility management, sensor integration, and data analytics, this book is ideally designed for computer scientists, bioinformatics analysts, doctors, nurses, hospital executives, medical students, IT specialists, software developers, computer engineers, industry professionals, academicians, researchers, and students seeking current research on how these emerging wireless technologies improve efficiency within the healthcare domain.

Internet of Medical Things for Smart Healthcare
Author : Chinmay Chakraborty,Amit Banerjee,Lalit Garg,Joel J. P. C. Rodrigues
Publisher : Springer Nature
Release Date : 2020-12-11
ISBN 10 : 9811580979
Pages : 305 pages

This book covers COVID-19 related research works and focuses on recent advances in the Internet of Things (IoT) in smart healthcare technologies. It includes reviews and original works on COVID-19 in terms of e-healthcare, medicine technology, life support systems, fast detection, diagnoses, developed technologies and innovative solutions, bioinformatics, datasets, apps for diagnosis, solutions for monitoring and control of the spread of COVID-19, among other topics. The book covers comprehensive studies from bioelectronics and biomedical engineering, artificial intelligence, and big data with a prime focus on COVID-19 pandemic.

Intelligent IoT Systems in Personalized Health Care
Author : Arun Kumar Sangaiah,Subhas Chandra Mukhopadhyay
Publisher : Academic Press
Release Date : 2020-12-01
ISBN 10 : 0128232048
Pages : 360 pages

Intelligent IoT Systems in Personalized Health Care delivers a significant forum for the technical advancement of IoMT learning in parallel computing environments across biomedical engineering diversified domains and its applications. Pursuing an interdisciplinary approach, the book focuses on methods used to identify and acquire valid, potentially useful knowledge sources. The book presents novel, in-depth, fundamental research contributions from a methodological/application perspective to help readers understand the fusion of AI with IoT and its capabilities in solving a diverse range of problems for biomedical engineering and its real-world personalized health care applications. The book is well suited for researchers exploring the significance of IoT based architecture to perform predictive analytics of user activities in sustainable health. Presents novel, in-depth, fundamental research contributions from a methodological/application perspective to help readers understand the fusion of AI with IoT Illustrates state-of-the-art developments in new theories and applications of IoMT techniques as applied to parallel computing environments in biomedical engineering systems Presents concepts and technologies successfully used in the implementation of today's intelligent data-centric IoT systems and Edge-Cloud-Big data

Machine Learning for Healthcare
Author : Rashmi Agrawal,Jyotir Moy Chatterjee,Abhishek Kumar,Pramod Singh Rathore,Dac-Nhuong Le
Publisher : CRC Press
Release Date : 2020-12-09
ISBN 10 : 1000221881
Pages : 204 pages

Machine Learning for Healthcare: Handling and Managing Data provides in-depth information about handling and managing healthcare data through machine learning methods. This book expresses the long-standing challenges in healthcare informatics and provides rational explanations of how to deal with them. Machine Learning for Healthcare: Handling and Managing Data provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of machine learning applications. These are illustrated in a case study which examines how chronic disease is being redefined through patient-led data learning and the Internet of Things. This text offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare. Readers will discover the ethical implications of machine learning in healthcare and the future of machine learning in population and patient health optimization. This book can also help assist in the creation of a machine learning model, performance evaluation, and the operationalization of its outcomes within organizations. It may appeal to computer science/information technology professionals and researchers working in the area of machine learning, and is especially applicable to the healthcare sector. The features of this book include: A unique and complete focus on applications of machine learning in the healthcare sector. An examination of how data analysis can be done using healthcare data and bioinformatics. An investigation of how healthcare companies can leverage the tapestry of big data to discover new business values. An exploration of the concepts of machine learning, along with recent research developments in healthcare sectors.

Internet of Things and Big Data Technologies for Next Generation Healthcare
Author : Chintan Bhatt,Nilanjan Dey,Amira S. Ashour
Publisher : Springer
Release Date : 2017-01-01
ISBN 10 : 3319497367
Pages : 388 pages

This comprehensive book focuses on better big-data security for healthcare organizations. Following an extensive introduction to the Internet of Things (IoT) in healthcare including challenging topics and scenarios, it offers an in-depth analysis of medical body area networks with the 5th generation of IoT communication technology along with its nanotechnology. It also describes a novel strategic framework and computationally intelligent model to measure possible security vulnerabilities in the context of e-health. Moreover, the book addresses healthcare systems that handle large volumes of data driven by patients’ records and health/personal information, including big-data-based knowledge management systems to support clinical decisions. Several of the issues faced in storing/processing big data are presented along with the available tools, technologies and algorithms to deal with those problems as well as a case study in healthcare analytics. Addressing trust, privacy, and security issues as well as the IoT and big-data challenges, the book highlights the advances in the field to guide engineers developing different IoT devices and evaluating the performance of different IoT techniques. Additionally, it explores the impact of such technologies on public, private, community, and hybrid scenarios in healthcare. This book offers professionals, scientists and engineers the latest technologies, techniques, and strategies for IoT and big data.

A Handbook of Internet of Things in Biomedical and Cyber Physical System
Author : Valentina E. Balas,Vijender Kumar Solanki,Raghvendra Kumar,Md. Atiqur Rahman Ahad
Publisher : Springer
Release Date : 2019-07-16
ISBN 10 : 3030239837
Pages : 314 pages

This book presents a compilation of state-of-the-art work on biomedical and cyber-physical systems in connection with the Internet of Things, and successfully blends theory and practice. The book covers the studies belonging to Biomedical and Cyber-physical System, so it is a unique effort by the research experts, who are divulging in the domain deeply. The book is very easy for the audience, who are doing study in the Biomedical and Cyber-physical System; it helps to read some real-time scenarios from where the reader in general gets many sparking ideas to convert it into the research problems in their studies. This book is of use to solve down the problems of graduate, postgraduate, doctoral industry executives, who are involving in the cutting-edge work of Internet of Things with Biomedical or Cyber-physical System, with the help of real-time solutions, given in the formation of chapters by subject’s experts. The key uses of this book are in the area of Internet of Things in connection with Cyber-physical System as well as Biomedical domain.

Internet of Things in Biomedical Engineering
Author : Valentina E. Balas,Le Hoang Son,Sudan Jha,Manju Khari,Raghvendra Kumar
Publisher : Academic Press
Release Date : 2019-06-14
ISBN 10 : 0128173572
Pages : 379 pages

Internet of Things in Biomedical Engineering presents the most current research in Internet of Things (IoT) applications for clinical patient monitoring and treatment. The book takes a systems-level approach for both human-factors and the technical aspects of networking, databases and privacy. Sections delve into the latest advances and cutting-edge technologies, starting with an overview of the Internet of Things and biomedical engineering, as well as a focus on ‘daily life.’ Contributors from various experts then discuss ‘computer assisted anthropology,’ CLOUDFALL, and image guided surgery, as well as bio-informatics and data mining. This comprehensive coverage of the industry and technology is a perfect resource for students and researchers interested in the topic. Presents recent advances in IoT for biomedical engineering, covering biometrics, bioinformatics, artificial intelligence, computer vision and various network applications Discusses big data and data mining in healthcare and other IoT based biomedical data analysis Includes discussions on a variety of IoT applications and medical information systems Includes case studies and applications, as well as examples on how to automate data analysis with Perl R in IoT

Internet of Things Use Cases for the Healthcare Industry
Author : Pethuru Raj,Jyotir Moy Chatterjee,Abhishek Kumar,B. Balamurugan
Publisher : Springer Nature
Release Date : 2020-03-31
ISBN 10 : 3030375269
Pages : 296 pages

This book explores potentially disruptive and transformative healthcare-specific use cases made possible by the latest developments in Internet of Things (IoT) technology and Cyber-Physical Systems (CPS). Healthcare data can be subjected to a range of different investigations in order to extract highly useful and usable intelligence for the automation of traditionally manual tasks. In addition, next-generation healthcare applications can be enhanced by integrating the latest knowledge discovery and dissemination tools. These sophisticated, smart healthcare applications are possible thanks to a growing ecosystem of healthcare sensors and actuators, new ad hoc and application-specific sensor and actuator networks, and advances in data capture, processing, storage, and mining. Such applications also take advantage of state-of-the-art machine and deep learning algorithms, major strides in artificial and ambient intelligence, and rapid improvements in the stability and maturity of mobile, social, and edge computing models.