machine learning and data science in the power generation industry

Download Machine Learning And Data Science In The Power Generation Industry ebooks in PDF, epub, tuebl, textbook from Skinvaders.Com. Read online Machine Learning And Data Science In The Power Generation Industry books on any device easily. We cannot guarantee that Machine Learning And Data Science In The Power Generation Industry book is available. Click download or Read Online button to get book, you can choose FREE Trial service. READ as many books as you like (Personal use).

Machine Learning and Data Science in the Power Generation Industry
Author : Patrick Bangert
Publisher : Elsevier
Release Date : 2021-01-25
ISBN 10 : 0128226005
Pages : 274 pages
GET BOOK!

Machine Learning and Data Science in the Power Generation Industry explores current best practices and quantifies the value-add in developing data-oriented computational programs in the power industry, with a particular focus on thoughtfully chosen real-world case studies. It provides a set of realistic pathways for organizations seeking to develop machine learning methods, with a discussion on data selection and curation as well as organizational implementation in terms of staffing and continuing operationalization. It articulates a body of case study–driven best practices, including renewable energy sources, the smart grid, and the finances around spot markets, and forecasting. Provides best practices on how to design and set up ML projects in power systems, including all nontechnological aspects necessary to be successful Explores implementation pathways, explaining key ML algorithms and approaches as well as the choices that must be made, how to make them, what outcomes may be expected, and how the data must be prepared for them Determines the specific data needs for the collection, processing, and operationalization of data within machine learning algorithms for power systems Accompanied by numerous supporting real-world case studies, providing practical evidence of both best practices and potential pitfalls

Machine Learning and Data Science in the Oil and Gas Industry
Author : Patrick Bangert
Publisher : Gulf Professional Publishing
Release Date : 2021-03-04
ISBN 10 : 0128209143
Pages : 306 pages
GET BOOK!

Machine Learning and Data Science in the Oil and Gas Industry explains how machine learning can be specifically tailored to oil and gas use cases. Petroleum engineers will learn when to use machine learning, how it is already used in oil and gas operations, and how to manage the data stream moving forward. Practical in its approach, the book explains all aspects of a data science or machine learning project, including the managerial parts of it that are so often the cause for failure. Several real-life case studies round out the book with topics such as predictive maintenance, soft sensing, and forecasting. Viewed as a guide book, this manual will lead a practitioner through the journey of a data science project in the oil and gas industry circumventing the pitfalls and articulating the business value. Chart an overview of the techniques and tools of machine learning including all the non-technological aspects necessary to be successful Gain practical understanding of machine learning used in oil and gas operations through contributed case studies Learn change management skills that will help gain confidence in pursuing the technology Understand the workflow of a full-scale project and where machine learning benefits (and where it does not)

Big Data Application in Power Systems
Author : Reza Arghandeh,Yuxun Zhou
Publisher : Elsevier
Release Date : 2017-11-27
ISBN 10 : 0128119691
Pages : 480 pages
GET BOOK!

Big Data Application in Power Systems brings together experts from academia, industry and regulatory agencies who share their understanding and discuss the big data analytics applications for power systems diagnostics, operation and control. Recent developments in monitoring systems and sensor networks dramatically increase the variety, volume and velocity of measurement data in electricity transmission and distribution level. The book focuses on rapidly modernizing monitoring systems, measurement data availability, big data handling and machine learning approaches to process high dimensional, heterogeneous and spatiotemporal data. The book chapters discuss challenges, opportunities, success stories and pathways for utilizing big data value in smart grids. Provides expert analysis of the latest developments by global authorities Contains detailed references for further reading and extended research Provides additional cross-disciplinary lessons learned from broad disciplines such as statistics, computer science and bioinformatics Focuses on rapidly modernizing monitoring systems, measurement data availability, big data handling and machine learning approaches to process high dimensional, heterogeneous and spatiotemporal data

Data Science for Wind Energy
Author : Yu Ding
Publisher : CRC Press
Release Date : 2019-06-04
ISBN 10 : 0429956509
Pages : 400 pages
GET BOOK!

Data Science for Wind Energy provides an in-depth discussion on how data science methods can improve decision making for wind energy applications, near-ground wind field analysis and forecast, turbine power curve fitting and performance analysis, turbine reliability assessment, and maintenance optimization for wind turbines and wind farms. A broad set of data science methods covered, including time series models, spatio-temporal analysis, kernel regression, decision trees, kNN, splines, Bayesian inference, and importance sampling. More importantly, the data science methods are described in the context of wind energy applications, with specific wind energy examples and case studies. Features Provides an integral treatment of data science methods and wind energy applications Includes specific demonstration of particular data science methods and their use in the context of addressing wind energy needs Presents real data, case studies and computer codes from wind energy research and industrial practice Covers material based on the author's ten plus years of academic research and insights

New Horizons for a Data-Driven Economy
Author : José María Cavanillas,Edward Curry,Wolfgang Wahlster
Publisher : Springer
Release Date : 2016-04-04
ISBN 10 : 3319215698
Pages : 303 pages
GET BOOK!

In this book readers will find technological discussions on the existing and emerging technologies across the different stages of the big data value chain. They will learn about legal aspects of big data, the social impact, and about education needs and requirements. And they will discover the business perspective and how big data technology can be exploited to deliver value within different sectors of the economy. The book is structured in four parts: Part I “The Big Data Opportunity” explores the value potential of big data with a particular focus on the European context. It also describes the legal, business and social dimensions that need to be addressed, and briefly introduces the European Commission’s BIG project. Part II “The Big Data Value Chain” details the complete big data lifecycle from a technical point of view, ranging from data acquisition, analysis, curation and storage, to data usage and exploitation. Next, Part III “Usage and Exploitation of Big Data” illustrates the value creation possibilities of big data applications in various sectors, including industry, healthcare, finance, energy, media and public services. Finally, Part IV “A Roadmap for Big Data Research” identifies and prioritizes the cross-sectorial requirements for big data research, and outlines the most urgent and challenging technological, economic, political and societal issues for big data in Europe. This compendium summarizes more than two years of work performed by a leading group of major European research centers and industries in the context of the BIG project. It brings together research findings, forecasts and estimates related to this challenging technological context that is becoming the major axis of the new digitally transformed business environment.

IoT Machine Learning Applications in Telecom, Energy, and Agriculture
Author : Puneet Mathur
Publisher : Apress
Release Date : 2020-05-09
ISBN 10 : 1484255496
Pages : 278 pages
GET BOOK!

Apply machine learning using the Internet of Things (IoT) in the agriculture, telecom, and energy domains with case studies. This book begins by covering how to set up the software and hardware components including the various sensors to implement the case studies in Python. The case study section starts with an examination of call drop with IoT in the telecoms industry, followed by a case study on energy audit and predictive maintenance for an industrial machine, and finally covers techniques to predict cash crop failure in agribusiness. The last section covers pitfalls to avoid while implementing machine learning and IoT in these domains. After reading this book, you will know how IoT and machine learning are used in the example domains and have practical case studies to use and extend. You will be able to create enterprise-scale applications using Raspberry Pi 3 B+ and Arduino Mega 2560 with Python. What You Will Learn Implement machine learning with IoT and solve problems in the telecom, agriculture, and energy sectors with Python Set up and use industrial-grade IoT products, such as Modbus RS485 protocol devices, in practical scenarios Develop solutions for commercial-grade IoT or IIoT projects Implement case studies in machine learning with IoT from scratch Who This Book Is For Raspberry Pi and Arduino enthusiasts and data science and machine learning professionals.

Applying Data Science
Author : Arthur K. Kordon
Publisher : Springer Nature
Release Date :
ISBN 10 : 3030363759
Pages : 329 pages
GET BOOK!

Data Analytics Applied to the Mining Industry
Author : Ali Soofastaei
Publisher : CRC Press
Release Date : 2020-11-12
ISBN 10 : 0429781776
Pages : 272 pages
GET BOOK!

Data Analytics Applied to the Mining Industry describes the key challenges facing the mining sector as it transforms into a digital industry able to fully exploit process automation, remote operation centers, autonomous equipment and the opportunities offered by the industrial internet of things. It provides guidelines on how data needs to be collected, stored and managed to enable the different advanced data analytics methods to be applied effectively in practice, through use of case studies, and worked examples. Aimed at graduate students, researchers, and professionals in the industry of mining engineering, this book: Explains how to implement advanced data analytics through case studies and examples in mining engineering Provides approaches and methods to improve data-driven decision making Explains a concise overview of the state of the art for Mining Executives and Managers Highlights and describes critical opportunity areas for mining optimization Brings experience and learning in digital transformation from adjacent sectors

TinyML
Author : Pete Warden,Daniel Situnayake
Publisher : O'Reilly Media
Release Date : 2019-12-16
ISBN 10 : 1492052019
Pages : 504 pages
GET BOOK!

Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size

Data Science for Wind Energy
Author : Yu Ding
Publisher : CRC Press
Release Date : 2019-06-04
ISBN 10 : 0429956517
Pages : 400 pages
GET BOOK!

Data Science for Wind Energy provides an in-depth discussion on how data science methods can improve decision making for wind energy applications, near-ground wind field analysis and forecast, turbine power curve fitting and performance analysis, turbine reliability assessment, and maintenance optimization for wind turbines and wind farms. A broad set of data science methods covered, including time series models, spatio-temporal analysis, kernel regression, decision trees, kNN, splines, Bayesian inference, and importance sampling. More importantly, the data science methods are described in the context of wind energy applications, with specific wind energy examples and case studies. Please also visit the author’s book site at https://aml.engr.tamu.edu/book-dswe. Features Provides an integral treatment of data science methods and wind energy applications Includes specific demonstration of particular data science methods and their use in the context of addressing wind energy needs Presents real data, case studies and computer codes from wind energy research and industrial practice Covers material based on the author's ten plus years of academic research and insights

Big Data Processing Using Spark in Cloud
Author : Mamta Mittal,Valentina E. Balas,Lalit Mohan Goyal,Raghvendra Kumar
Publisher : Springer
Release Date : 2018-06-16
ISBN 10 : 9811305501
Pages : 264 pages
GET BOOK!

The book describes the emergence of big data technologies and the role of Spark in the entire big data stack. It compares Spark and Hadoop and identifies the shortcomings of Hadoop that have been overcome by Spark. The book mainly focuses on the in-depth architecture of Spark and our understanding of Spark RDDs and how RDD complements big data’s immutable nature, and solves it with lazy evaluation, cacheable and type inference. It also addresses advanced topics in Spark, starting with the basics of Scala and the core Spark framework, and exploring Spark data frames, machine learning using Mllib, graph analytics using Graph X and real-time processing with Apache Kafka, AWS Kenisis, and Azure Event Hub. It then goes on to investigate Spark using PySpark and R. Focusing on the current big data stack, the book examines the interaction with current big data tools, with Spark being the core processing layer for all types of data. The book is intended for data engineers and scientists working on massive datasets and big data technologies in the cloud. In addition to industry professionals, it is helpful for aspiring data processing professionals and students working in big data processing and cloud computing environments.

Advanced Data Analytics for Power Systems
Author : Ali Tajer,Samir M. Perlaza,H. Vincent Poor
Publisher : Cambridge University Press
Release Date : 2021-01-31
ISBN 10 : 1108494757
Pages : 615 pages
GET BOOK!

Experts in data analytics and power engineering present techniques addressing the needs of modern power systems, covering theory and applications related to power system reliability, efficiency, and security. With topics spanning large-scale and distributed optimization, statistical learning, big data analytics, graph theory, and game theory, this is an essential resource for graduate students and researchers in academia and industry with backgrounds in power systems engineering, applied mathematics, and computer science.