Author | : R.J Goldston |

Publisher | : CRC Press |

Release Date | : 2020-07-14 |

ISBN 10 | : 9781439822074 |

Pages | : 510 pages |

Introduction to Plasma Physics is the standard text for an introductory lecture course on plasma physics. The text’s six sections lead readers systematically and comprehensively through the fundamentals of modern plasma physics. Sections on single-particle motion, plasmas as fluids, and collisional processes in plasmas lay the groundwork for a thorough understanding of the subject. The authors take care to place the material in its historical context for a rich understanding of the ideas presented. They also emphasize the importance of medical imaging in radiotherapy, providing a logical link to more advanced works in the area. The text includes problems, tables, and illustrations as well as a thorough index and a complete list of references.

Author | : D. A. Gurnett,A. Bhattacharjee |

Publisher | : Cambridge University Press |

Release Date | : 2005-01-06 |

ISBN 10 | : 9780521364836 |

Pages | : 452 pages |

Advanced undergraduate/beginning graduate text on space and laboratory plasma physics.

Author | : Francis F. Chen |

Publisher | : Springer Science & Business Media |

Release Date | : 2013-03-09 |

ISBN 10 | : 1475755953 |

Pages | : 421 pages |

TO THE SECOND EDITION In the nine years since this book was first written, rapid progress has been made scientifically in nuclear fusion, space physics, and nonlinear plasma theory. At the same time, the energy shortage on the one hand and the exploration of Jupiter and Saturn on the other have increased the national awareness of the important applications of plasma physics to energy production and to the understanding of our space environment. In magnetic confinement fusion, this period has seen the attainment 13 of a Lawson number nTE of 2 x 10 cm -3 sec in the Alcator tokamaks at MIT; neutral-beam heating of the PL T tokamak at Princeton to KTi = 6. 5 keV; increase of average ß to 3%-5% in tokamaks at Oak Ridge and General Atomic; and the stabilization of mirror-confined plasmas at Livermore, together with injection of ion current to near field-reversal conditions in the 2XIIß device. Invention of the tandem mirror has given magnetic confinement a new and exciting dimension. New ideas have emerged, such as the compact torus, surface-field devices, and the EßT mirror-torus hybrid, and some old ideas, such as the stellarator and the reversed-field pinch, have been revived. Radiofrequency heat ing has become a new star with its promise of dc current drive. Perhaps most importantly, great progress has been made in the understanding of the MHD behavior of toroidal plasmas: tearing modes, magnetic Vll Vlll islands, and disruptions.

Author | : Francis F. Chen |

Publisher | : Springer Science & Business Media |

Release Date | : 2012-12-06 |

ISBN 10 | : 1475704593 |

Pages | : 330 pages |

This book grew out of lecture notes for an undergraduate course in plasma physics that has been offered for a number of years at UCLA. With the current increase in interest in controlled fusion and the wide spread use of plasma physics in space research and relativistic as trophysics, it makes sense for the study of plasmas to become a part of an undergraduate student's basic experience, along with subjects like thermodynamics or quantum mechanics. Although the primary purpose of this book was to fulfill a need for a text that seniors or juniors can really understand, I hope it can also serve as a painless way for scientists in other fields-solid state or laser physics, for instance to become acquainted with plasmas. Two guiding principles were followed: Do not leave algebraic steps as an exercise for the reader, and do not let the algebra obscure the physics. The extent to which these opposing aims could be met is largely due to the treatment of a plasma as two interpenetrating fluids. The two-fluid picture is both easier to understand and more accurate than the single-fluid approach, at least for low-density plasma phe nomena.

Author | : Richard Fitzpatrick |

Publisher | : CRC Press |

Release Date | : 2014-08-01 |

ISBN 10 | : 1466594268 |

Pages | : 293 pages |

Encompasses the Lectured Works of a Renowned Expert in the Field Plasma Physics: An Introduction is based on a series of university course lectures by a leading name in the field, and thoroughly covers the physics of the fourth state of matter. This book looks at non-relativistic, fully ionized, nondegenerate, quasi-neutral, and weakly coupled plasma. Intended for the student market, the text provides a concise and cohesive introduction to plasma physics theory, and offers a solid foundation for students wishing to take higher level courses in plasma physics. Mathematically Rigorous, but Driven by Physics This work contains over 80 exercises—carefully selected for their pedagogical value—with fully worked out solutions available in a separate solutions manual for professors. The author provides an in-depth discussion of the various fluid theories typically used in plasma physics. The material presents a number of applications, and works through specific topics including basic plasma parameters, the theory of charged particle motion in inhomogeneous electromagnetic fields, plasma fluid theory, electromagnetic waves in cold plasmas, electromagnetic wave propagation through inhomogeneous plasmas, magnetohydrodynamical fluid theory, and kinetic theory. Discusses fluid theory illustrated by the investigation of Langmuir sheaths Explores charged particle motion illustrated by the investigation of charged particle trapping in the earth’s magnetosphere Examines the WKB theory illustrated by the investigation of radio wave propagation in the earth’s ionosphere Studies the MHD theory illustrated by the investigation of solar wind, dynamo theory, magnetic reconnection, and MHD shocks Plasma Physics: An Introduction addresses applied areas and advanced topics in the study of plasma physics, and specifically demonstrates the behavior of ionized gas.

Author | : Gerard Belmont,Laurence Rezeau,Caterina Riconda,Arnaud Zaslavsky |

Publisher | : Elsevier |

Release Date | : 2019-03-01 |

ISBN 10 | : 0128189789 |

Pages | : 236 pages |

Introduction to Plasma Physics presents the latest on plasma physics. Although plasmas are not very present in our immediate environment, there are still universal phenomena that we encounter, i.e., electric shocks and galactic jets. This book presents, in parallel, the basics of plasma theory and a number of applications to laboratory plasmas or natural plasmas. It provides a fresh look at concepts already addressed in other disciplines, such as pressure and temperature. In addition, the information provided helps us understand the links between fluid theories, such as MHD and the kinetic theory of these media, especially in wave propagation. Presents the different phenomena that make up plasma physics Explains the basics of plasma theory Helps readers comprehend the various concepts related to plasmas

Author | : Francis Chen |

Publisher | : Springer |

Release Date | : 2015-12-17 |

ISBN 10 | : 3319223097 |

Pages | : 490 pages |

This complete introduction to plasma physics and controlled fusion by one of the pioneering scientists in this expanding field offers both a simple and intuitive discussion of the basic concepts of this subject and an insight into the challenging problems of current research. In a wholly lucid manner the work covers single-particle motions, fluid equations for plasmas, wave motions, diffusion and resistivity, Landau damping, plasma instabilities and nonlinear problems. For students, this outstanding text offers a painless introduction to this important field; for teachers, a large collection of problems; and for researchers, a concise review of the fundamentals as well as original treatments of a number of topics never before explained so clearly. This revised edition contains new material on kinetic effects, including Bernstein waves and the plasma dispersion function, and on nonlinear wave equations and solitons. For the third edition, updates was made throughout each existing chapter, and two new chapters were added; Ch 9 on “Special Plasmas” and Ch 10 on Plasma Applications (including Atmospheric Plasmas).

Author | : W. B. Thompson |

Publisher | : Elsevier |

Release Date | : 2013-10-22 |

ISBN 10 | : 1483164772 |

Pages | : 282 pages |

An Introduction to Plasma Physics, Second Edition focuses on the processes, reactions, properties, and approaches involved in plasma physics, including kinetic theory, radiation, particle motions, and oscillations. The publication first offers information on the introduction to plasma physics and basic properties of the equilibrium plasma. Discussions focus on the occurrence of plasma in nature, technological aspects of plasma physics, quasi-neutrality and plasma oscillations, transmission of electromagnetic radiation through plasma, production of plasma by shock waves, and degree of ionization in a thermal plasma. The text then ponders on arc plasma, magnetohydrodynamics, and magnetohydrodynamic stability. The manuscript takes a look at plasma dynamics and particle motions and kinetic theory of the plasma. Topics include dielectric behavior of a magnetized plasma, approximate treatment of particle orbits, formal derivation of the drifts, macroscopic effects of particle motion, consequences of the magnetic moment, and transport equations and hydrodynamics. Low-frequency oscillations of a uniform magnetized plasma, stability and perturbation theories, and approximate procedure for solving the transport equations are also discussed. The publication is a highly recommended source material for readers interested in plasma physics.

Author | : Donald A. Gurnett,Amitava Bhattacharjee |

Publisher | : Cambridge University Press |

Release Date | : 2017-02-20 |

ISBN 10 | : 1107027373 |

Pages | : 521 pages |

Introducing the principles and applications of plasma physics, this new edition is ideal as an advanced undergraduate or graduate-level text.

Author | : R.J Goldston,P.H Rutherford |

Publisher | : CRC Press |

Release Date | : 1995-11 |

ISBN 10 | : |

Pages | : 491 pages |

Covers the basic concepts of plasma physics

Author | : Luis Conde |

Publisher | : Morgan & Claypool Publishers |

Release Date | : 2018-12-11 |

ISBN 10 | : 1643271741 |

Pages | : 130 pages |

The growing number of scientific and technological applications of plasma physics in the field of Aerospace Engineering requires that graduate students and professionals understand their principles. This introductory book is the expanded version of class notes of lectures I taught for several years to students of Aerospace Engineering and Physics. It is intended as a reading guide, addressed to students and non-specialists to tackle later with more advanced texts. To make the subject more accessible the book does not follow the usual organization of standard textbooks in this field and is divided in two parts. The first introduces the basic kinetic theory (molecular collisions, mean free path, etc.) of neutral gases in equilibrium in connection to the undergraduate physics courses. The basic properties of ionized gases and plasmas (Debye length, plasma frequencies, etc.) are addressed in relation to their equilibrium states and the collisional processes at the microscopic level. The physical description of short and long-range (Coulomb) collisions and the more relevant collisions (elementary processes) between electrons' ions and neutral atoms or molecules are discussed. The second part introduces the physical description of plasmas as a statistical system of interacting particles introducing advanced concepts of kinetic theory, (non-equilibrium distribution functions, Boltzmann collision operator, etc). The fluid transport equations for plasmas of electron ions and neutral atoms and the hydrodynamic models of interest in space science and plasma technology are derived. The plasma production in the laboratory in the context of the physics of electric breakdown is also discussed. Finally, among the myriad of aerospace applications of plasma physics, the low pressure microwave electron multipactor breakdown and plasma thrusters for space propulsion are presented in two separate chapters.

Author | : Boris Michajlovič forme avant 2007 Smirnov |

Publisher | : N.A |

Release Date | : 1977 |

ISBN 10 | : |

Pages | : 174 pages |

Author | : Hans-Joachim Kunze |

Publisher | : Springer Science & Business Media |

Release Date | : 2009-09-18 |

ISBN 10 | : 3642022332 |

Pages | : 242 pages |

Although based on lectures given for graduate students and postgraduates starting in plasma physics, this concise introduction to the fundamental processes and tools is as well directed at established researchers who are newcomers to spectroscopy and seek quick access to the diagnostics of plasmas ranging from low- to high-density technical systems at low temperatures, as well as from low- to high-density hot plasmas. Basic ideas and fundamental concepts are introduced as well as typical instrumentation from the X-ray to the infrared spectral regions. Examples, techniques and methods illustrate the possibilities. This book directly addresses the experimentalist who actually has to carry out the experiments and their interpretation. For that reason about half of the book is devoted to experimental problems, the instrumentation, components, detectors and calibration.

Author | : P.K Shukla,A.A Mamun |

Publisher | : CRC Press |

Release Date | : 2015-05-06 |

ISBN 10 | : 1420034103 |

Pages | : 450 pages |

Introduction to Dusty Plasma Physics contains a detailed description of the occurrence of dusty plasmas in our Solar System, the Earth's mesosphere, and in laboratory discharges. The book illustrates numerous mechanisms for charging dust particles and provides studies of the grain dynamics under the influence of forces that are common in dusty plasma environments.

Author | : Dwight R. Nicholson |

Publisher | : N.A |

Release Date | : 1983 |

ISBN 10 | : |

Pages | : 292 pages |

Provides a complete introduction to plasma physics as taught in a 1-year graduate course. Covers all important topics of plasma theory, omitting no mathematical steps in derivations. Covers solitons, parametric instabilities, weak turbulence theory, and more. Includes exercises and problems which apply theories to practical examples. 4 of the 10 chapters do not include complex variables and can be used for a 1-semester senior level undergraduate course.

Author | : Peter Andrew Sturrock |

Publisher | : Cambridge University Press |

Release Date | : 1994-06-02 |

ISBN 10 | : 9780521448109 |

Pages | : 335 pages |

Plasma Physics is an authoritative and wide-ranging pedagogic study of the "fourth" state of matter. The constituents of the plasma state are influenced by electric and magnetic fields, and in turn also produce electric and magnetic fields. This fact leads to a rich array of properties of plasma described in this text. The author uses examples throughout, many taken from astrophysical phenomena, to explain concepts. In addition, problem sets at the end of each chapter will serve to reinforce key points. A basic knowledge of mathematics and physics is preferable to fully appreciate this text. This book provides the ideal introduction to this complex and fascinating field of research, balancing theoretical aspects with practical and preparing the graduate student for further study.

Author | : J. A. Bittencourt |

Publisher | : Springer Science & Business Media |

Release Date | : 2013-06-29 |

ISBN 10 | : 1475740301 |

Pages | : 679 pages |

Fundamentals of Plasma Physics is a general introduction designed to present a comprehensive, logical and unified treatment of the fundamentals of plasma physics based on statistical kinetic theory, with applications to a variety of important plasma phenomena. Its clarity and completeness makes the text suitable for self-learning and for self-paced courses. Throughout the text the emphasis is on clarity, rather than formality, the various derivations are explained in detail and, wherever possible, the physical interpretations are emphasized. The mathematical treatment is set out in great detail, carrying out the steps which are usually left to the reader. The problems form an integral part of the text and most of them were designed in such a way as to provide a guideline, stating intermediate steps with answers.

Author | : Alexander Piel |

Publisher | : Springer |

Release Date | : 2017-09-07 |

ISBN 10 | : 3319634275 |

Pages | : 463 pages |

The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. The guidelines of plasma physics are illustrated by a host of practical examples, preferentially from plasma diagnostics. There, Langmuir probe methods, laser interferometry, ionospheric sounding, Faraday rotation, and diagnostics of dusty plasmas are discussed. Though primarily addressing students in plasma physics, the book is easily accessible for researchers in neighboring disciplines, such as space science, astrophysics, material science, applied physics, and electrical engineering. This second edition has been thoroughly revised and contains substantially enlarged chapters on plasma diagnostics, dusty plasmas and plasma discharges. Probe techniques have been rearranged into basic theory and a host of practical examples for probe techniques in dc, rf, and space plasmas. New topics in dusty plasmas, such as plasma crystals, Yukawa balls, phase transitions and attractive forces have been adopted. The chapter on plasma discharges now contains a new section on conventional and high-power impulse magnetron sputtering. The recently discovered electrical asymmetry effect in capacitive rf-discharges is described. The text is based on an introductory course to plasma physics and advanced courses in plasma diagnostics, dusty plasmas, and plasma waves, which the author has taught at Kiel University for three decades. The pedagogical approach combines detailed explanations, a large number of illustrative figures, short summaries of the basics at the end of each chapter, and a selection of problems with detailed solutions.

Author | : J. A. Bittencourt |

Publisher | : Elsevier |

Release Date | : 2013-10-22 |

ISBN 10 | : 148329319X |

Pages | : 730 pages |

A general introduction designed to present a comprehensive, logical and unified treatment of the fundamentals of plasma physics based on statistical kinetic theory. Its clarity and completeness make it suitable for self-learning and self-paced courses. Problems are included.

Author | : Alexander Piel |

Publisher | : Springer Science & Business Media |

Release Date | : 2010-06-14 |

ISBN 10 | : 9783642104916 |

Pages | : 398 pages |

This book is an outgrowth of courses in plasma physics which I have taught at Kiel University for many years. During this time I have tried to convince my students that plasmas as different as gas dicharges, fusion plasmas and space plasmas can be described in a uni ed way by simple models. The challenge in teaching plasma physics is its apparent complexity. The wealth of plasma phenomena found in so diverse elds makes it quite different from atomic physics, where atomic structure, spectral lines and chemical binding can all be derived from a single equation—the Schrödinger equation. I positively accept the variety of plasmas and refrain from subdividing plasma physics into the traditional, but arti cially separated elds, of hot, cold and space plasmas. This is why I like to confront my students, and the readers of this book, with examples from so many elds. By this approach, I believe, they will be able to become discoverers who can see the commonality between a falling apple and planetary motion. As an experimentalist, I am convinced that plasma physics can be best understood from a bottom-up approach with many illustrating examples that give the students con dence in their understanding of plasma processes. The theoretical framework of plasma physics can then be introduced in several steps of re nement. In the end, the student (or reader) will see that there is something like the Schrödinger equation, namely the Vlasov-Maxwell model of plasmas, from which nearly all phenomena in collisionless plasmas can be derived.