Author | : Lev Eppelbaum |

Publisher | : Elsevier |

Release Date | : 2019-07-18 |

ISBN 10 | : 0128116862 |

Pages | : 476 pages |

Geophysical Potential Fields: Geological and Environmental Applications, Volume Two, investigates the similarities and differences of potential geophysical fields, including gravity, magnetics, temperature, resistivity and self-potential, along with the influence of noise on these fields. As part of the Computational Geophysics series, this volume provides computational examples and methods for effectively solving geophysical problems in a full cycle manner. Including both quantitative and qualitative analysis, the book offers different filtering and transformation procedures, integrated analysis, and special interpretation methodologies, also presenting a developed 3D algorithm for combined modeling of gravity and magnetic fields in complex environments. The book also includes applications of the unified potential field system, such as studying deep structure, searching hydrocarbon and ore deposits, localizing buried water horizons and rockslide areas, tectono-structural mapping of water basins, and classifying archaeological targets. It is an ideal and unique resource for geophysicists, exploration geologists, archaeologists and environmental scientists. Clearly demonstrates the successive stages of geophysical field analysis for different geological and environmental targets Provides a unified system for potential geophysical field analysis that is demonstrated by numerous examples of system application Demonstrates the possibilities for rapidly and effectively interpreting anomalies, receiving some knowledge of modern wavelet, diffusion maps and informational approach applications in geophysics, and combined gravity-magnetic methodology of 3D modeling Includes text of the Geological Space Field Calculation (GSFC) software intended for 3D combined modeling of gravity and magnetic fields in complex environments

Author | : P.S. Naidu,M.P. Mathew |

Publisher | : Elsevier |

Release Date | : 1998-06-19 |

ISBN 10 | : 9780080527123 |

Pages | : 297 pages |

When some useful information is hidden behind a mass of unwanted information we often resort to information processing used in its broad sense or specifically to signal processing when the useful information is a waveform. In geophysical surveys, in particular in aeromagnetic and gravity surveys, from the measured field it is often difficult to say much about any one specific target unless it is close to the surface and well isolated from the rest. The digital signal processing approach would enable us to bring out the underlying model of the source, that is, the geological structure. Some of the tools of dsp such as digital filtering, spectrum estimation, inversion, etc., have found extensive applications in aeromagnetic and gravity map analysis. There are other emerging applications of dsp in the area of inverse filtering, three dimensional visualization, etc. The purpose of this book is to bring numerous tools of dsp to the geophysical community, in particular, to those who are entering the geophysical profession. Also the practicing geophysicists, involved in the aeromagnetic and gravity data analysis, using the commercially available software packages, will find this book useful in answering their questions on "why and how?". It is hoped that such a background would enable the practising geophysicists to appreciate the prospects and limitations of the dsp in extracting useful information from the potential field maps. The topics covered are: potential field signals and models, digital filtering in two dimensions, spectrum estimation and application, parameter estimation with error bounds.

Author | : Lev Eppelbaum |

Publisher | : Elsevier |

Release Date | : 2019-07-18 |

ISBN 10 | : 0128116862 |

Pages | : 476 pages |

Geophysical Potential Fields: Geological and Environmental Applications, Volume Two, investigates the similarities and differences of potential geophysical fields, including gravity, magnetics, temperature, resistivity and self-potential, along with the influence of noise on these fields. As part of the Computational Geophysics series, this volume provides computational examples and methods for effectively solving geophysical problems in a full cycle manner. Including both quantitative and qualitative analysis, the book offers different filtering and transformation procedures, integrated analysis, and special interpretation methodologies, also presenting a developed 3D algorithm for combined modeling of gravity and magnetic fields in complex environments. The book also includes applications of the unified potential field system, such as studying deep structure, searching hydrocarbon and ore deposits, localizing buried water horizons and rockslide areas, tectono-structural mapping of water basins, and classifying archaeological targets. It is an ideal and unique resource for geophysicists, exploration geologists, archaeologists and environmental scientists. Clearly demonstrates the successive stages of geophysical field analysis for different geological and environmental targets Provides a unified system for potential geophysical field analysis that is demonstrated by numerous examples of system application Demonstrates the possibilities for rapidly and effectively interpreting anomalies, receiving some knowledge of modern wavelet, diffusion maps and informational approach applications in geophysics, and combined gravity-magnetic methodology of 3D modeling Includes text of the Geological Space Field Calculation (GSFC) software intended for 3D combined modeling of gravity and magnetic fields in complex environments

Author | : Kalyan Kumar Roy |

Publisher | : Springer Science & Business Media |

Release Date | : 2007-11-15 |

ISBN 10 | : 354072334X |

Pages | : 651 pages |

This book introduces the principles of gravitational, magnetic, electrostatic, direct current electrical and electromagnetic fields, with detailed solutions of Laplace and electromagnetic wave equations by the method of separation of variables. Discussion includes behaviours of the scalar and vector potential and the nature of the solutions of these boundary value problems, along with the use of complex variables and conformal transformation, Green's theorem, Green's formula and Green's functions.

Author | : Richard J. Blakely |

Publisher | : Cambridge University Press |

Release Date | : 1996-09-13 |

ISBN 10 | : 9780521575478 |

Pages | : 464 pages |

Applications of potential theory to modern geophysics with exercises and FORTRAN subroutines.

Author | : Kalyan Kumar Roy |

Publisher | : Springer Science & Business Media |

Release Date | : 2007-11-15 |

ISBN 10 | : 354072334X |

Pages | : 651 pages |

This book introduces the principles of gravitational, magnetic, electrostatic, direct current electrical and electromagnetic fields, with detailed solutions of Laplace and electromagnetic wave equations by the method of separation of variables. Discussion includes behaviours of the scalar and vector potential and the nature of the solutions of these boundary value problems, along with the use of complex variables and conformal transformation, Green's theorem, Green's formula and Green's functions.

Author | : William J. Hinze,Ralph R. B. von Frese,R. Von Frese,Afif H. Saad |

Publisher | : Cambridge University Press |

Release Date | : 2013-03-14 |

ISBN 10 | : 0521871018 |

Pages | : 512 pages |

This combination of textbook and reference manual provides a comprehensive account of gravity and magnetic methods for exploring the subsurface using surface, marine, airborne and satellite measurements. It describes key current topics and techniques, physical properties of rocks and other earth materials, and digital data analysis methods used to process and interpret anomalies for subsurface information. Each chapter starts with an overview and concludes by listing key concepts to consolidate new learning. An accompanying website presents problem sets and interactive computer-based exercises, providing hands-on experience of processing, modeling and interpreting data. A comprehensive online suite of full-color case histories illustrates the practical utility of modern gravity and magnetic surveys. This is an ideal text for advanced undergraduate and graduate courses and reference text for research academics and professional geophysicists. It is a valuable resource for all those interested in petroleum, engineering, mineral, environmental, geological and archeological exploration of the lithosphere.

Author | : N. E. Goldstein |

Publisher | : N.A |

Release Date | : 1962 |

ISBN 10 | : |

Pages | : 124 pages |

Author | : Michael S. Zhdanov |

Publisher | : Elsevier |

Release Date | : 2015-07-15 |

ISBN 10 | : 044462712X |

Pages | : 730 pages |

Geophysical Inverse Theory and Applications, Second Edition, brings together fundamental results developed by the Russian mathematical school in regularization theory and combines them with the related research in geophysical inversion carried out in the West. It presents a detailed exposition of the methods of regularized solution of inverse problems based on the ideas of Tikhonov regularization, and shows the different forms of their applications in both linear and nonlinear methods of geophysical inversion. It’s the first book of its kind to treat many kinds of inversion and imaging techniques in a unified mathematical manner. The book is divided in five parts covering the foundations of the inversion theory and its applications to the solution of different geophysical inverse problems, including potential field, electromagnetic, and seismic methods. Unique in its focus on providing a link between the methods used in gravity, electromagnetic, and seismic imaging and inversion, it represents an exhaustive treatise on inversion theory. Written by one of the world’s foremost experts, this work is widely recognized as the ultimate researcher’s reference on geophysical inverse theory and its practical scientific applications. Presents state-of-the-art geophysical inverse theory developed in modern mathematical terminology—the first to treat many kinds of inversion and imaging techniques in a unified mathematical way. Provides a critical link between the methods used in gravity, electromagnetic, and seismic imaging and inversion, and represents an exhaustive treatise on geophysical inversion theory. Features more than 300 illustrations, figures, charts and graphs to underscore key concepts. Reflects the latest developments in inversion theory and applications and captures the most significant changes in the field over the past decade.

Author | : N.A |

Publisher | : Academic Press |

Release Date | : 1992-07-20 |

ISBN 10 | : 008095992X |

Pages | : 581 pages |

An essential book for all students and scientists in the field, Part A of Geophysical Field Theory and Method describes the physical and mathematical principles of geophysical methods, specifically the behavior of gravitational, electrical, and magnetic fields. The broader use of these methods underlines the far-reaching appeal of this book. Oil and mineral prospecting, solving groundwater and engineering problems, and well-logging are just some of the activities which involve geophysical methods. Parts B and C will be devoted to the theory of fields and applied to electromagnetic, seismic, nuclear, and geothermal methods. Presents physical principles of geophysical methods Covers physical laws which govern field behavior and their areas of application Examines the influence of a medium on a field, and the distribution of field generators Presents formulation of conditions when physical laws cannot be used directly for field calculations Examines systems of field equations and their neccesity when some of the field generators are unknown Explains the formulation of boundary value problems and their importance in determining the field Features auxiliary fields and their role in field theory Presents approximate methods of field calculation

Author | : N.A |

Publisher | : N.A |

Release Date | : 1964 |

ISBN 10 | : |

Pages | : 329 pages |

Author | : Michael S. Zhdanov |

Publisher | : Elsevier |

Release Date | : 2002-04-24 |

ISBN 10 | : 9780080532509 |

Pages | : 633 pages |

This book presents state-of-the-art geophysical inverse theory developed in modern mathematical terminology. The book brings together fundamental results developed by the Russian mathematical school in regularization theory and combines them with the related research in geophysical inversion carried out in the West. It presents a detailed exposition of the methods of regularized solution of inverse problems based on the ideas of Tikhonov regularization, and shows the different forms of their applications in both linear and nonlinear methods of geophysical inversion. This text is the first to treat many kinds of inversion and imaging techniques in a unified mathematical manner. The book is divided in five parts covering the foundations of the inversion theory and its applications to the solution of different geophysical inverse problems, including potential field, electromagnetic, and seismic methods. The first part is an introduction to inversion theory. The second part contains a description of the basic methods of solution of the linear and nonlinear inverse problems using regularization. The following parts treat the application of regularization methods in gravity and magnetic, electromagnetic, and seismic inverse problems. The key connecting idea of these applied parts of the book is the analogy between the solutions of the forward and inverse problems in different geophysical methods. The book also includes chapters related to the modern technology of geophysical imaging, based on seismic and electromagnetic migration. This volume is unique in its focus on providing a link between the methods used in gravity, electromagnetic, and seismic imaging and inversion, and represents an exhaustive treatise on inversion theory.

Author | : Brian Kennett,Richard Chopping,Richard Blewett |

Publisher | : ANU Press |

Release Date | : 2018-08-29 |

ISBN 10 | : 1760462470 |

Pages | : 133 pages |

The Australian Continent: A Geophysical Synthesis is designed to provide a summary of the character of the Australian continent through the extensive information available at the continental scale, as a contribution to the understanding of Australia's lithospheric architecture and its evolution. The results build on the extensive databases assembled at Geoscience Australia, particularly for potential fields, supplemented by the full range of seismological information, mostly from The Australian National University. To aid in cross comparison of results from different disciplines, information is presented with a common projection and scales.

Author | : Tapio Ruotoistenmäki |

Publisher | : N.A |

Release Date | : 1987 |

ISBN 10 | : |

Pages | : 84 pages |

Author | : J. Bee Bednar |

Publisher | : SIAM |

Release Date | : 1992-01-01 |

ISBN 10 | : 9780898712735 |

Pages | : 453 pages |

This collection of papers on geophysical inversion contains research and survey articles on where the field has been and where it's going, and what is practical and what is not. Topics covered include seismic tomography, migration and inverse scattering.

Author | : Anthony Okiwelu |

Publisher | : BoD – Books on Demand |

Release Date | : 2018-05-09 |

ISBN 10 | : 1789230209 |

Pages | : 160 pages |

This book is focused on different aspects of geophysical research, particularly on modern approach in subsurface imaging, tectonics, geohazard, seismicity, and Earth planetary system. Syntheses of results from regional and local studies combined with new techniques of geophysical data acquisition and interpretation from diverse geological provinces are presented. Some of the chapter explained clearly the geophysical technic that can image local sources in urban and rural settings in Israel. An example of studies on basement tectonics and fault reactivation in North America using integrated geophysical methods is also presented. Two modes of seismicity, one involving rotational seismology and another based on seismic response in Mexico using Hilbert-Huang transform (HHT) as an alternative technique for extracting data that will be useful for the assessment of potential earthquake, are discussed in other sets of chapters. The integration of geoelectric methods in another chapter demonstrated delimitation of the resistivity anomalies caused by different types of hydrocarbon contaminants and rocks in rural, industrial, and urban sites. The results of electrical resistivity method to define 1D and 2D electrical models from two datasets acquired in dry and rainy seasons in Panama (Central America) were used to show the relationship between electrical resistivity and volumetric water content. Petrophysical analyses show good fits between resistivity and volumetric water content and known parameters for rocks and soils. The study on Earth planetary system noted that at all stages of the Earth?s formation, convective heat and mass transfer are the most important factors in the dynamics of the planet. The chapter on magnetics shows how remanent magnetization and self-demagnetization complicate the inversion and interpretation of magnetic anomaly with examples from iron deposit in South Australia.

Author | : N.A |

Publisher | : Academic Press |

Release Date | : 1987-09-24 |

ISBN 10 | : 9780080860121 |

Pages | : 622 pages |

Geophysics Field Measurements

Author | : V.P. Dimri |

Publisher | : Springer |

Release Date | : 2015-11-21 |

ISBN 10 | : 3319246755 |

Pages | : 152 pages |

This book deals with fractals in understanding problems encountered in earth science, and their solutions. It starts with an analysis of two classes of methods (homogeneous fractals random models, and homogeneous source distributions or “one point” distributions) widely diffused in the geophysical community, especially for studying potential fields and their related source distributions. Subsequently, the use of fractals in potential fields is described by scaling spectral methods for estimation of curie depth. The book also presents an update of the use of the fractal concepts in geological understanding of faults and their significance in geological modelling of hydrocarbon reservoirs. Geophysical well log data provide a unique description of the subsurface lithology; here, the Detrended Fluctuation Analysis technique is presented in case studies located off the west-coast of India. Another important topic is the fractal model of continuum percolation which quantitatively reproduce the flow path geometry by applying the Poiseuille’s equation. The pattern of fracture heterogeneity in reservoir scale of natural geological formations can be viewed as spatially distributed self-similar tree structures; here, the authors present simple analytical models based on the medium structural characteristics to explain the flow in natural fractures. The Fractal Differential Adjacent Segregation (F-DAS) is an unconventional approach for fractal dimension estimation using a box count method. The present analysis provides a better understanding of variability of the system (adsorbents – adsorbate interactions). Towards the end of book, the authors discuss multi-fractal scaling properties of seismograms in order to quantify the complexity associated with high-frequency seismic signals. Finally, the book presents a review on fractal methods applied to fire point processes and satellite time-continuous signals that are sensitive to fire occurrences.

Author | : L. P. Geldart,Robert E. Sheriff |

Publisher | : SEG Books |

Release Date | : 2004 |

ISBN 10 | : 1560801158 |

Pages | : 514 pages |