failure analysis and fractography of polymer composites

Download Failure Analysis And Fractography Of Polymer Composites ebooks in PDF, epub, tuebl, textbook from Skinvaders.Com. Read online Failure Analysis And Fractography Of Polymer Composites books on any device easily. We cannot guarantee that Failure Analysis And Fractography Of Polymer Composites book is available. Click download or Read Online button to get book, you can choose FREE Trial service. READ as many books as you like (Personal use).

Failure Analysis and Fractography of Polymer Composites
Author : Emile Greenhalgh
Publisher : Elsevier
Release Date : 2009-09-28
ISBN 10 : 1845696816
Pages : 608 pages

The growing use of polymer composites is leading to increasing demand for fractographic expertise. Fractography is the study of fracture surface morphologies and it gives an insight into damage and failure mechanisms, underpinning the development of physically-based failure criteria. In composites research it provides a crucial link between predictive models and experimental observations. Finally, it is vital for post-mortem analysis of failed or crashed polymer composite components, the findings of which can be used to optimise future designs. Failure analysis and fractography of polymer composites covers the following topics: methodology and tools for failure analysis; fibre-dominated failures; delamination-dominated failures; fatigue failures; the influence of fibre architecture on failure; types of defect and damage; case studies of failures due to overload and design deficiencies; case studies of failures due to material and manufacturing defects; and case studies of failures due to in-service factors. With its distinguished author, Failure analysis and fractography of polymer composites is a standard reference text for researchers working on damage and failure mechanisms in composites, engineers characterising manufacturing and in-service defects in composite structures, and investigators undertaking post-mortem failure analysis of components. The book is aimed at both academic and industrial users, specifically final year and postgraduate engineering and materials students researching composites and industry designers and engineers in aerospace, civil, marine, power and transport applications. Examines the study of fracture surface morphologies in uderstanding composite structural behaviour Discusses composites research and post-modern analysis of failed or crashed polymer composite components Provides an overview of damage mechanisms, types of defect and failure criteria

Fractography in Failure Analysis of Polymers
Author : Michael Hayes,Dale Edwards,Andy Shah
Publisher : William Andrew
Release Date : 2015-05-08
ISBN 10 : 0323297994
Pages : 252 pages

Fractography in Failure Analysis of Polymers provides a practical guide to the science of fractography and its application in the failure analysis of plastic components. In addition to a brief background on the theory of fractography, the authors discuss the various fractographic tools and techniques used to identify key fracture characteristics. Case studies are included for a wide range of polymer types, applications, and failure modes, as well as best practice guidelines enabling engineers to apply these lessons to their own work. Detailed images and their appropriate context are presented for reference in failure investigations. This text is vital for engineers who must determine the root causes of failure when it occurs, helping them further study the ramifications of product liability claims, environmental concerns, and brand image. Presents a comprehensive guide to applied fractography, enabling improved reliability and longevity of plastic parts and products Includes case studies that demonstrate material selection decisions and how to reduce failure rates Provides best practices on how to analyze the cause of material failures, along with guidelines on improving design and manufacturing decisions

Fractography and Failure Mechanisms of Polymers and Composites
Author : Anne C. Roulin-Moloney
Publisher : Springer
Release Date : 1989-06-06
ISBN 10 :
Pages : 540 pages

Plastics Failure Analysis and Prevention
Author : John Moalli
Publisher : William Andrew
Release Date : 2001-12-31
ISBN 10 : 081551865X
Pages : 345 pages

This book contains analysis of reasons that cause products to fail. General methods of product failure evaluation give powerful tools in product improvement. Such methods, discussed in the book, include practical risk analysis, failure mode and effect analysis, preliminary hazard analysis, progressive failure analysis, fault tree analysis, mean time between failures, Wohler curves, finite element analysis, cohesive zone model, crack propagation kinetics, time-temperature collectives, quantitative characterization of fatigue damage, and fracture maps. Methods of failure analysis are critical to for material improvement and they are broadly discussed in this book. Fractography of plastics is relatively a new field which has many commonalities with fractography of metals. Here various aspects of fractography of plastics and metals are compared and contrasted. Fractography application in studies of static and cycling loading of ABS is also discussed. Other methods include SEM, SAXS, FTIR, DSC, DMA, GC/MS, optical microscopy, fatigue behavior, multiaxial stress, residual stress analysis, punch resistance, creep-rupture, impact, oxidative induction time, craze testing, defect analysis, fracture toughness, activation energy of degradation. Many references are given in this book to real products and real cases of their failure. The products discussed include office equipment, automotive compressed fuel gas system, pipes, polymer blends, blow molded parts, layered, cross-ply and continuous fiber composites, printed circuits, electronic packages, hip implants, blown and multilayered films, construction materials, component housings, brake cups, composite pressure vessels, swamp coolers, electrical cables, plumbing fittings, medical devices, medical packaging, strapping tapes, balloons, marine coatings, thermal switches, pressure relief membranes, pharmaceutical products, window profiles, and bone cements.

Characterization and Failure Analysis of Plastics
Author : ASM International,Steve Lampman
Publisher : ASM International
Release Date : 2003
ISBN 10 : 1615030735
Pages : 489 pages

The selection and application of engineered materials is an integrated process that requires an understanding of the interaction between materials properties, manufacturing characteristics, design considerations, and the total life cycle of the product. This reference book on engineering plastics provides practical and comprehensive coverage on how the performance of plastics is characterized during design, property testing, and failure analysis. The fundamental structure and properties of plastics are reviewed for general reference, and detailed articles describe the important design factors, properties, and failure mechanisms of plastics. The effects of composition, processing, and structure are detailed in articles on the physical, chemical, thermal, and mechanical properties. Other articles cover failure mechanisms such as: crazing and fracture; impact loading; fatigue failure; wear failures, moisture related failure; organic chemical related failure; photolytic degradation; and microbial degradation. Characterization of plastics in failure analysis is described with additional articles on analysis of structure, surface analysis, and fractography.

Failure Analysis of Engineering Materials
Author : Charles R. Brooks,Ashok Choudhury
Publisher : McGraw Hill Professional
Release Date : 2002
ISBN 10 : 9780071357586
Pages : 602 pages

This text introduces the important aspects associated with the failure analysis of engineering components; and provides a treatment of both macroscopic and microscopic observations of fracture surfaces. --

Fatigue and Fracture
Author : F. C. Campbell
Publisher : ASM International
Release Date : 2012
ISBN 10 : 1615039767
Pages : 685 pages

"This book emphasizes the physical and practical aspects of fatigue and fracture. It covers mechanical properties of materials, differences between ductile and brittle fractures, fracture mechanics, the basics of fatigue, structural joints, high temperature failures, wear, environmentally-induced failures, and steps in the failure analysis process."--publishers website.

Failure Mechanisms in Polymer Matrix Composites
Author : Paul Robinson,Emile Greenhalgh,Silvestre Pinho
Publisher : Elsevier
Release Date : 2012-01-19
ISBN 10 : 0857095323
Pages : 464 pages

Polymer matrix composites are increasingly replacing traditional materials, such as metals, for applications in the aerospace, automotive and marine industries. Because of the relatively recent development of these composites there is extensive on-going research to improve the understanding and modelling of their behaviour – particularly their failure processes. As a consequence there is a strong demand among design engineers for the latest information on this behaviour in order to fully exploit the potential of these materials for a wide range of weight-sensitive applications. Failure mechanisms in polymer matrix composites explores the main types of composite failure and examines their implications in specific applications. Part one discusses various failure mechanisms, including a consideration of manufacturing defects and addressing a variety of loading forms such as impact and the implications for structural integrity. This part also reviews testing techniques and modelling methods for predicting potential failure in composites. Part two investigates the effects of polymer-matrix composite failure in a range of industries including aerospace, automotive and other transport, defence, marine and off-shore applications. Recycling issues and environmental factors affecting the use of composite materials are also considered. With its distinguished editors and international team of expert contributors Failure mechanisms in polymer matrix composites is a valuable reference for designers, scientists and research and development managers working in the increasing range of industries in which composite materials are extensively used. The book will also be a useful guide for academics studying in the composites field. Discusses various failure mechanisms, including manufacturing defects Reviews testing techniques and modelling methods for predicting potential failure Investigates failure in aerospace, automotive, defence, marine and off-shore applications

Author : Derek Hull
Publisher : Cambridge University Press
Release Date : 1999-09-23
ISBN 10 : 9780521646840
Pages : 366 pages

Fracture surfaces are produced by breaking a solid. The appearance of the surface, particularly the topography, depends on the type of material - metal, polymer, ceramic, biomaterial, composite, rock - and on the conditions under which it was broken - stress (tensile, shear, creep, fatigue, impact), temperature, environment (air, water, oil, acid), etc. This 1999 book describes ways of studying the surface topography, and the interpretation of the topographical features in terms of the microstructure and the way it was tested. Fractography has numerous applications in a range of materials, and is particularly relevant in materials science and to inter-disciplinary subjects involving materials science, including physics, chemistry, engineering, biomimetics, earth sciences, biology and archaeology. This book provides the basis for an understanding of deformation and fracture in all solids, for interpreting fracture surface topography, and for the design of clear and unambiguous experiments involving many aspects of fracture in a wide range of solids.

3D Fibre Reinforced Polymer Composites
Author : L. Tong,A.P. Mouritz,M. Bannister
Publisher : Elsevier
Release Date : 2002-11-20
ISBN 10 : 9780080525822
Pages : 254 pages

Fibre reinforced polymer (FRP) composites are used in almost every type of advanced engineering structure, with their usage ranging from aircraft, helicopters and spacecraft through to boats, ships and offshore platforms and to automobiles, sports goods, chemical processing equipment and civil infrastructure such as bridges and buildlings. The usage of FRP composites continues to grow at an impessive rate as these materials are used more in their existing markets and become established in relatively new markets such as biomedical devices and civil structures. A key factor driving the increased applications of composites over the recent years is the development of new advanced forms of FRP materials. This includes developments in high performance resin systems and new styles of reinforcement, such as carbon nanotubes and nanoparticles. This book provides an up-to-date account of the fabrication, mechanical properties, delamination resistance, impact tolerance and applications of 3D FRP composites. The book focuses on 3D composites made using the textile technologies of weaving, braiding, knitting and stiching as well as by z-pinning.

Deformation and Fracture Behaviour of Polymer Materials
Author : Wolfgang Grellmann,Beate Langer
Publisher : Springer
Release Date : 2017-07-12
ISBN 10 : 3319418793
Pages : 533 pages

This book covers the most recent advances in the deformation and fracture behaviour of polymer material. It provides deeper insight into related morphology–property correlations of thermoplastics, elastomers and polymer resins. Each chapter of this book gives a comprehensive review of state-of-the-art methods of materials testing and diagnostics, tailored for plastic pipes, films and adhesive systems as well as elastomeric components and others. The investigation of deformation and fracture behaviour using the experimental methods of fracture mechanics has been the subject of intense research during the last decade. In a systematic manner, modern aspects of fracture mechanics in the industrial application of polymers for bridging basic research and industrial development are illustrated by multifarious examples of innovative materials usage. This book will be of value to scientists, engineers and in polymer materials science.

Creep and Fatigue in Polymer Matrix Composites
Author : R M Guedes
Publisher : Elsevier
Release Date : 2010-11-29
ISBN 10 : 0857090437
Pages : 600 pages

Creep is the tendency of materials to deform when subjected to long-term stress, particularly when exposed to heat. Fatigue phenomena occur when a material is subjected to cyclic loading, causing damage which may progress to failure. Both are critical factors in the long-term performance and reliability of materials such as polymer matrix composites which are often exposed to these types of stress in civil engineering and other applications. This important book reviews the latest research in modelling and predicting creep and fatigue in polymer matrix composites. The first part of the book reviews the modelling of viscoelastic and viscoplastic behaviour as a way of predicting performance and service life. Part two discusses techniques for modelling creep rupture and failure. The final part of the book discusses ways of testing and predicting long-term creep and fatigue in polymer matrix composites. With its distinguished editor and international team of contributors, Creep and Fatigue in Polymer Matrix Composites is a standard reference for all those researching and using polymer matrix composites in such areas as civil engineering. Reviews the latest research in modelling and predicting creep and fatigue in polymer matrix composites A specific focus on viscoelestic and viscoplastic modelling features the time-temperature-age superposition principle for predicting long-term response Creep rupture and damage interaction is examined with particular focus on time-dependent failure criteria for lifetime prediction of polymer matrix composite structures illustrated using experimental cases