discrete cosine and sine transforms

Download Discrete Cosine And Sine Transforms ebooks in PDF, epub, tuebl, textbook from Skinvaders.Com. Read online Discrete Cosine And Sine Transforms books on any device easily. We cannot guarantee that Discrete Cosine And Sine Transforms book is available. Click download or Read Online button to get book, you can choose FREE Trial service. READ as many books as you like (Personal use).

Discrete Cosine and Sine Transforms
Author : Vladimir Britanak,Patrick C. Yip,K. R Rao
Publisher : Elsevier
Release Date : 2010-07-28
ISBN 10 : 9780080464640
Pages : 368 pages
GET BOOK!

The Discrete Cosine Transform (DCT) is used in many applications by the scientific, engineering and research communities and in data compression in particular. Fast algorithms and applications of the DCT Type II (DCT-II) have become the heart of many established international image/video coding standards. Since then other forms of the DCT and Discrete Sine Transform (DST) have been investigated in detail. This new edition presents the complete set of DCT and DST discrete trigonometric transforms, including their definitions, general mathematical properties, and relations to the optimal Karhunen-Loéve transform (KLT), with the emphasis on fast algorithms (one-dimensional and two-dimensional) and integer approximations of DCTs and DSTs for their efficient implementations in the integer domain. DCTs and DSTs are real-valued transforms that map integer-valued signals to floating-point coefficients. To eliminate the floating-point operations, various methods of integer approximations have been proposed to construct and flexibly generate a family of integer DCT and DST transforms with arbitrary accuracy and performance. The integer DCTs/DSTs with low-cost and low-powered implementation can replace the corresponding real-valued transforms in wireless and satellite communication systems as well as portable computing applications. The book is essentially a detailed excursion on orthogonal/orthonormal DCT and DST matrices, their matrix factorizations and integer aproximations. It is hoped that the book will serve as a valuable reference for industry, academia and research institutes in developing integer DCTs and DSTs as well as an inspiration source for further advanced research. Presentation of the complete set of DCTs and DSTs in context of entire class of discrete unitary sinusoidal transforms: the origin, definitions, general mathematical properties, mutual relationships and relations to the optimal Karhunen-Loéve transform (KLT) Unified treatment with the fast implementations of DCTs and DSTs: the fast rotation-based algorithms derived in the form of recursive sparse matrix factorizations of a transform matrix including one- and two-dimensional cases Detailed presentation of various methods and design approaches to integer approximation of DCTs and DSTs utilizing the basic concepts of linear algebra, matrix theory and matrix computations leading to their efficient multiplierless real-time implementations, or in general reversible integer-to-integer implementations Comprehensive list of additional references reflecting recent/latest developments in the efficient implementations of DCTs and DSTs mainly one-, two-, three- and multi-dimensional fast DCT/DST algorithms including the recent active research topics for the time period from 1990 up to now

Discrete Cosine Transform
Author : K. Ramamohan Rao,P. Yip
Publisher : Academic Press
Release Date : 2014-06-28
ISBN 10 : 0080925340
Pages : 512 pages
GET BOOK!

This is the first comprehensive treatment of the theoretical aspects of the discrete cosine transform (DCT), which is being recommended by various standards organizations, such as the CCITT, ISO etc., as the primary compression tool in digital image coding. The main purpose of the book is to provide a complete source for the user of this signal processing tool, where both the basics and the applications are detailed. An extensive bibliography covers both the theory and applications of the DCT. The novice will find the book useful in its self-contained treatment of the theory of the DCT, the detailed description of various algorithms supported by computer programs and the range of possible applications, including codecs used for teleconferencing, videophone, progressive image transmission, and broadcast TV. The more advanced user will appreciate the extensive references. Tables describing ASIC VLSI chips for implementing DCT, and motion estimation and details on image compression boards are also provided.

Linear Difference Equations with Discrete Transform Methods
Author : A.J. Jerri
Publisher : Springer Science & Business Media
Release Date : 2013-03-09
ISBN 10 : 1475756577
Pages : 442 pages
GET BOOK!

This book covers the basic elements of difference equations and the tools of difference and sum calculus necessary for studying and solv ing, primarily, ordinary linear difference equations. Examples from various fields are presented clearly in the first chapter, then discussed along with their detailed solutions in Chapters 2-7. The book is in tended mainly as a text for the beginning undergraduate course in difference equations, where the "operational sum calculus" of the di rect use of the discrete Fourier transforms for solving boundary value problems associated with difference equations represents an added new feature compared to other existing books on the subject at this introductory level. This means that in addition to the familiar meth ods of solving difference equations that are covered in Chapter 3, this book emphasizes the use of discrete transforms. It is an attempt to introduce the methods and mechanics of discrete transforms for solv ing ordinary difference equations. The treatment closely parallels what many students have already learned about using the opera tional (integral) calculus of Laplace and Fourier transforms to solve differential equations. As in the continuous case, discrete operational methods may not solve problems that are intractable by other meth ods, but they can facilitate the solution of a large class of discrete initial and boundary value problems. Such operational methods, or what we shall term "operational sum calculus," may be extended eas ily to solve partial difference equations associated with initial and/or boundary value problems.

Discrete Cosine Transform, Second Edition
Author : Humberto Ochoa-Dominguez,K. R. Rao
Publisher : CRC Press
Release Date : 2019-04-18
ISBN 10 : 135139648X
Pages : 358 pages
GET BOOK!

Many new DCT-like transforms have been proposed since the first edition of this book. For example, the integer DCT that yields integer transform coefficients, the directional DCT to take advantage of several directions of the image and the steerable DCT. The advent of higher dimensional frames such as UHDTV and 4K-TV demand for small and large transform blocks to encode small or large similar areas respectively in an efficient way. Therefore, a new updated book on DCT, adapted to the modern days, considering the new advances in this area and targeted for students, researchers and the industry is a necessity.

Signal Analysis and Prediction
Author : Ales Prochazka,Nicholas Kingsbury,P.J.W. Payner,J. Uhlir
Publisher : Springer Science & Business Media
Release Date : 1998-12-23
ISBN 10 : 9780817640422
Pages : 502 pages
GET BOOK!

Methods of signal analysis represent a broad research topic with applications in many disciplines, including engineering, technology, biomedicine, seismography, eco nometrics, and many others based upon the processing of observed variables. Even though these applications are widely different, the mathematical background be hind them is similar and includes the use of the discrete Fourier transform and z-transform for signal analysis, and both linear and non-linear methods for signal identification, modelling, prediction, segmentation, and classification. These meth ods are in many cases closely related to optimization problems, statistical methods, and artificial neural networks. This book incorporates a collection of research papers based upon selected contri butions presented at the First European Conference on Signal Analysis and Predic tion (ECSAP-97) in Prague, Czech Republic, held June 24-27, 1997 at the Strahov Monastery. Even though the Conference was intended as a European Conference, at first initiated by the European Association for Signal Processing (EURASIP), it was very gratifying that it also drew significant support from other important scientific societies, including the lEE, Signal Processing Society of IEEE, and the Acoustical Society of America. The organizing committee was pleased that the re sponse from the academic community to participate at this Conference was very large; 128 summaries written by 242 authors from 36 countries were received. In addition, the Conference qualified under the Continuing Professional Development Scheme to provide PD units for participants and contributors.

Orthogonal Transforms for Digital Signal Processing
Author : N. Ahmed,K.R. Rao
Publisher : Springer Science & Business Media
Release Date : 2012-12-06
ISBN 10 : 364245450X
Pages : 264 pages
GET BOOK!

This book is intended for those wishing to acquire a working knowledge of orthogonal transforms in the area of digital signal processing. The authors hope that their introduction will enhance the opportunities for interdiscipli nary work in this field. The book consists of ten chapters. The first seven chapters are devoted to the study of the background, motivation and development of orthogonal transforms, the prerequisites for which are a basic knowledge of Fourier series transform (e.g., via a course in differential equations) and matrix al gebra. The last three chapters are relatively specialized in that they are di rected toward certain applications of orthogonal transforms in digital signal processing. As such, a knowlegde of discrete probability theory is an essential additional prerequisite. A basic knowledge of communication theory would be helpful, although not essential. Much of the material presented here has evolved from graduate level courses offered by the Departments of Electrical Engineering at Kansas State University and the University of Texas at Arlington, during the past five years. With advanced graduate students, all the material was covered in one semester. In the case of first year graduate students, the material in the first seven chapters was covered in one semester. This was followed by a prob lems project-oriented course directed toward specific applications, using the material in the last three chapters as a basis.

Transforms and Applications Handbook
Author : Alexander D. Poularikas
Publisher : CRC Press
Release Date : 2018-09-03
ISBN 10 : 1420066536
Pages : 911 pages
GET BOOK!

Updating the original, Transforms and Applications Handbook, Third Edition solidifies its place as the complete resource on those mathematical transforms most frequently used by engineers, scientists, and mathematicians. Highlighting the use of transforms and their properties, this latest edition of the bestseller begins with a solid introduction to signals and systems, including properties of the delta function and some classical orthogonal functions. It then goes on to detail different transforms, including lapped, Mellin, wavelet, and Hartley varieties. Written by top experts, each chapter provides numerous examples and applications that clearly demonstrate the unique purpose and properties of each type. The material is presented in a way that makes it easy for readers from different backgrounds to familiarize themselves with the wide range of transform applications. Revisiting transforms previously covered, this book adds information on other important ones, including: Finite Hankel, Legendre, Jacobi, Gengenbauer, Laguerre, and Hermite Fraction Fourier Zak Continuous and discrete Chirp-Fourier Multidimensional discrete unitary Hilbert-Huang Most comparable books cover only a few of the transforms addressed here, making this text by far the most useful for anyone involved in signal processing—including electrical and communication engineers, mathematicians, and any other scientist working in this field.

Integral and Discrete Transforms with Applications and Error Analysis
Author : Abdul Jerri
Publisher : CRC Press
Release Date : 1992-06-11
ISBN 10 : 9780824782528
Pages : 848 pages
GET BOOK!

This reference/text desribes the basic elements of the integral, finite, and discrete transforms - emphasizing their use for solving boundary and initial value problems as well as facilitating the representations of signals and systems.;Proceeding to the final solution in the same setting of Fourier analysis without interruption, Integral and Discrete Transforms with Applications and Error Analysis: presents the background of the FFT and explains how to choose the appropriate transform for solving a boundary value problem; discusses modelling of the basic partial differential equations, as well as the solutions in terms of the main special functions; considers the Laplace, Fourier, and Hankel transforms and their variations, offering a more logical continuation of the operational method; covers integral, discrete, and finite transforms and trigonometric Fourier and general orthogonal series expansion, providing an application to signal analysis and boundary-value problems; and examines the practical approximation of computing the resulting Fourier series or integral representation of the final solution and treats the errors incurred.;Containing many detailed examples and numerous end-of-chapter exercises of varying difficulty for each section with answers, Integral and Discrete Transforms with Applications and Error Analysis is a thorough reference for analysts; industrial and applied mathematicians; electrical, electronics, and other engineers; and physicists and an informative text for upper-level undergraduate and graduate students in these disciplines.

Transforms and Applications Handbook
Author : Alexander D. Poularikas
Publisher : CRC Press
Release Date : 2018-09-03
ISBN 10 : 1420066536
Pages : 911 pages
GET BOOK!

Updating the original, Transforms and Applications Handbook, Third Edition solidifies its place as the complete resource on those mathematical transforms most frequently used by engineers, scientists, and mathematicians. Highlighting the use of transforms and their properties, this latest edition of the bestseller begins with a solid introduction to signals and systems, including properties of the delta function and some classical orthogonal functions. It then goes on to detail different transforms, including lapped, Mellin, wavelet, and Hartley varieties. Written by top experts, each chapter provides numerous examples and applications that clearly demonstrate the unique purpose and properties of each type. The material is presented in a way that makes it easy for readers from different backgrounds to familiarize themselves with the wide range of transform applications. Revisiting transforms previously covered, this book adds information on other important ones, including: Finite Hankel, Legendre, Jacobi, Gengenbauer, Laguerre, and Hermite Fraction Fourier Zak Continuous and discrete Chirp-Fourier Multidimensional discrete unitary Hilbert-Huang Most comparable books cover only a few of the transforms addressed here, making this text by far the most useful for anyone involved in signal processing—including electrical and communication engineers, mathematicians, and any other scientist working in this field.

The Transform and Data Compression Handbook
Author : Kamisetty Ramam Rao,Patrick C. Yip
Publisher : CRC Press
Release Date : 2018-10-03
ISBN 10 : 1420037382
Pages : 408 pages
GET BOOK!

Data compression is one of the main contributing factors in the explosive growth in information technology. Without it, a number of consumer and commercial products, such as DVD, videophone, digital camera, MP3, video-streaming and wireless PCS, would have been virtually impossible. Transforming the data to a frequency or other domain enables even more efficient compression. By illustrating this intimate link, The Transform and Data Compression Handbook serves as a much-needed handbook for a wide range of researchers and engineers. The authors describe various discrete transforms and their applications in different disciplines. They cover techniques, such as adaptive quantization and entropy coding, that result in significant reduction in bit rates when applied to the transform coefficients. With clear and concise presentations of the ideas and concepts, as well as detailed descriptions of the algorithms, the authors provide important insight into the applications and their limitations. Data compression is an essential step towards the efficient storage and transmission of information. The Transform and Data Compression Handbook provides a wealth of information regarding different discrete transforms and demonstrates their power and practicality in data compression.

The DFT
Author : William L. Briggs,Van Emden Henson
Publisher : SIAM
Release Date : 1995-01-01
ISBN 10 : 0898713420
Pages : 434 pages
GET BOOK!

This book explores both the practical and theoretical aspects of the Discrete Fourier Transform, one of the most widely used tools in science, engineering, and computational mathematics. Designed to be accessible to an audience with diverse interests and mathematical backgrounds, the book is written in an informal style and is supported by many examples, figures, and problems. Conceived as an "owner's" manual, this comprehensive book covers such topics as the history of the DFT, derivations and properties of the DFT, comprehensive error analysis, issues concerning the implementation of the DFT in one and several dimensions, symmetric DFTs, a sample of DFT applications, and an overview of the FFT.

Digital Signal Processing and Statistical Classification
Author : George J. Miao,Mark A. Clements
Publisher : Artech House
Release Date : 2002
ISBN 10 : 9781580531351
Pages : 492 pages
GET BOOK!

This is the first book to introduce and integrate advanced digital signal processing (DSP) and classification together, and the only volume to introduce state-of-the-art transforms including DFT, FFT, DCT, DHT, PCT, CDT, and ODT together for DSP and communication applications. You get step-by-step guidance in discrete-time domain signal processing and frequency domain signal analysis; digital filter design and adaptive filtering; multirate digital processing; and statistical signal classification. It also helps you overcome problems associated with multirate A/D and D/A converters.