data fusion methodology and applications

Download Data Fusion Methodology And Applications ebooks in PDF, epub, tuebl, textbook from Skinvaders.Com. Read online Data Fusion Methodology And Applications books on any device easily. We cannot guarantee that Data Fusion Methodology And Applications book is available. Click download or Read Online button to get book, you can choose FREE Trial service. READ as many books as you like (Personal use).

Data Fusion Methodology and Applications
Author : Marina Cocchi
Publisher : Elsevier
Release Date : 2019-05-11
ISBN 10 : 0444639853
Pages : 396 pages

Data Fusion Methodology and Applications explores the data-driven discovery paradigm in science and the need to handle large amounts of diverse data. Drivers of this change include the increased availability and accessibility of hyphenated analytical platforms, imaging techniques, the explosion of omics data, and the development of information technology. As data-driven research deals with an inductive attitude that aims to extract information and build models capable of inferring the underlying phenomena from the data itself, this book explores the challenges and methodologies used to integrate data from multiple sources, analytical platforms, different modalities, and varying timescales. Presents the first comprehensive textbook on data fusion, focusing on all aspects of data-driven discovery Includes comprehensible, theoretical chapters written for large and diverse audiences Provides a wealth of selected application to the topics included

Exam Prep for: Data Fusion Methodology and Applications
Author : N.A
Publisher : N.A
Release Date :
ISBN 10 :
Pages : 329 pages

Multisensor Data Fusion
Author : Hassen Fourati
Publisher : CRC Press
Release Date : 2017-12-19
ISBN 10 : 1482263750
Pages : 639 pages

Multisensor Data Fusion: From Algorithms and Architectural Design to Applications covers the contemporary theory and practice of multisensor data fusion, from fundamental concepts to cutting-edge techniques drawn from a broad array of disciplines. Featuring contributions from the world’s leading data fusion researchers and academicians, this authoritative book: Presents state-of-the-art advances in the design of multisensor data fusion algorithms, addressing issues related to the nature, location, and computational ability of the sensors Describes new materials and achievements in optimal fusion and multisensor filters Discusses the advantages and challenges associated with multisensor data fusion, from extended spatial and temporal coverage to imperfection and diversity in sensor technologies Explores the topology, communication structure, computational resources, fusion level, goals, and optimization of multisensor data fusion system architectures Showcases applications of multisensor data fusion in fields such as medicine, transportation's traffic, defense, and navigation Multisensor Data Fusion: From Algorithms and Architectural Design to Applications is a robust collection of modern multisensor data fusion methodologies. The book instills a deeper understanding of the basics of multisensor data fusion as well as a practical knowledge of the problems that can be faced during its execution.

Data Fusion and Data Mining for Power System Monitoring
Author : Arturo Román Messina
Publisher : CRC Press
Release Date : 2020-05-05
ISBN 10 : 1000065898
Pages : 250 pages

Data Fusion and Data Mining for Power System Monitoring provides a comprehensive treatment of advanced data fusion and data mining techniques for power system monitoring with focus on use of synchronized phasor networks. Relevant statistical data mining techniques are given, and efficient methods to cluster and visualize data collected from multiple sensors are discussed. Both linear and nonlinear data-driven mining and fusion techniques are reviewed, with emphasis on the analysis and visualization of massive distributed data sets. Challenges involved in realistic monitoring, visualization, and analysis of observation data from actual events are also emphasized, supported by examples of relevant applications. Features Focuses on systematic illustration of data mining and fusion in power systems Covers issues of standards used in the power industry for data mining and data analytics Applications to a wide range of power networks are provided including distribution and transmission networks Provides holistic approach to the problem of data mining and data fusion using cutting-edge methodologies and technologies Includes applications to massive spatiotemporal data from simulations and actual events

NDT Data Fusion
Author : Xavier Gros
Publisher : Elsevier
Release Date : 1996-11-01
ISBN 10 : 0080524044
Pages : 205 pages

Data fusion is a rapidly developing technology which involves the combination of information supplied by several NDT (Non-Destructive Testing) sensors to provide a more complete and understandable picture of structural integrity. This text is the first to be devoted exclusively to the concept of multisensor integration and data fusion applied to NDT. The advantages of this methodology are widely acknowledged and the author presents an excellent introduction to data fusion processes. Problems are approached progressively through detailed case studies, offering practical guidance for those wishing to develop and explore NDT data fusion further. This book will prove invaluable to inspectors, students and researchers concerned with NDT signal processing measurements and testing. It shows the great value and major benefits which can be achieved by implementing multisensor data fusion, not only in NDT but also in any discipline where measurements and testing are key activities.

Multisensor Data Fusion
Author : David Hall,James Llinas
Publisher : CRC Press
Release Date : 2001-06-20
ISBN 10 : 1420038540
Pages : 568 pages

The emerging technology of multisensor data fusion has a wide range of applications, both in Department of Defense (DoD) areas and in the civilian arena. The techniques of multisensor data fusion draw from an equally broad range of disciplines, including artificial intelligence, pattern recognition, and statistical estimation. With the rapid evolut

Data Fusion for Situation Monitoring, Incident Detection, Alert and Response Management
Author : E. Shahbazian,G. Rogova,P. Valin
Publisher : IOS Press
Release Date : 2006-03-02
ISBN 10 : 1607501244
Pages : 832 pages

Data Fusion is a very broad interdisciplinary technology domain. It provides techniques and methods for; integrating information from multiple sources and using the complementarities of these detections to derive maximum information about the phenomenon being observed; analyzing and deriving the meaning of these observations and predicting possible consequences of the observed state of the environment; selecting the best course of action; and controlling the actions. Here, the focus is on the more mature phase of data fusion, namely the detection and identification / classification of phenomena being observed and exploitation of the related methods for Security-Related Civil Science and Technology (SST) applications. It is necessary to; expand on the data fusion methodology pertinent to Situation Monitoring, Incident Detection, Alert and Response Management; discuss some related Cognitive Engineering and visualization issues; provide an insight into the architectures and methodologies for building a data fusion system; discuss fusion approaches to image exploitation with emphasis on security applications; discuss novel distributed tracking approaches as a necessary step of situation monitoring and incident detection; and provide examples of real situations, in which data fusion can enhance incident detection, prevention and response capability. In order to give a logical presentation of the data fusion material, first the general concepts are highlighted (Fusion Methodology, Human Computer Interactions and Systems and Architectures), closing with several applications (Data Fusion for Imagery, Tracking and Sensor Fusion and Applications and Opportunities for Fusion).

La nécessité et l’importance de représenter une scène en 3-D ont été illustrées par de nombreuses applications en télédétection, telles que la planification urbaine, la gestion des catastrophes, etc. Dans ces applications, les données issues du LiDAR et de l’imagerie optique aérienne et satellitaire ont été largement utilisées. Il existe une complémentarité entre les données issues du LiDAR aéroporté et de l’imagerie optique aérienne/satellite, qui motive la fusion de ces données permettant de représenter des scènes observées en 3-D avec une meilleure précision et complétude. Ces dernières années, l’extraction automatique de l’empreinte des bâtiments dans les scènes urbaines et résidentielles est devenue un sujet d’intérêt croissant dans le domaine de la représentation et de la reconstruction de scènes en 3-D. Avec l’augmentation de la disponibilité d’une quantité massive de données capturées par différents capteurs LiDAR et d’imagerie installés sur des plateformes aériennes et spatiales, de nouvelles opportunités se présentent pour effectuer cette tâche à grande échelle. Cependant, les méthodes de fusion existantes considèrent généralement soit des systèmes d’acquisition hybrides composés de LiDAR et de caméras optiques fixés rigidement, soit des jeux de données acquis à partir de la même plateforme à des dates identiques ou très proches, et ayant la même résolution spatiale. Elles n’ont pas été conçues pour traiter des jeux de données acquis avec des plateformes différentes, dans différentes configurations, à des moments différents, ayant des résolutions spatiales et des niveaux de détail différents. Un tel contexte est appelé contexte d’acquisition non-contraint. D’autre part, l’extraction automatique de l’empreinte des bâtiments à grande échelle est une tâche complexe. Des méthodes existantes ont obtenu des résultats relativement significatifs mais en définissant des formes a priori pour les bâtiments, en imposant des contraintes géométriques, ou en se limitant à des zones spécifiques. De telles hypothèses ne sont plus envisageables pour des jeux de données à grande échelle. Ce travail de recherche est consacré au développement d’une méthode versatile de recalage grossier puis fin de jeux de données collectés selon un contexte d’acquisition non-contraint. Il vise à surmonter les défis associés à ce contexte tels que le décalage spatial entre les jeux de données, la différence de résolution spatiale et de niveau de détail, etc. De plus, ce travail de recherche propose une méthode d’extraction efficace des empreintes des bâtiments, offrant un niveau de précision élevé tout en étant une méthode non-supervisée dédiée aux applications à grande échelle. La méthode proposée, appelée “Super-Resolution-based Snake Model” (SRSM), consiste en une adaptation des modèles de snakes—une technique classique de segmentation d’images—pour exploiter des images d’élévation LiDAR à haute résolution générées par un processus de super-résolution. Il se rapporte au contexte d’acquisition de données non-contraint, servant d’exemple d’application de premier ordre. Des résultats pertinents ont été obtenus lors des évaluations rigoureuses des méthodes proposées, à savoir un niveau de précision hautement souhaitable par rapport aux méthodes existantes. Mots-clés : LiDAR aéroporté, imagerie optique satellitaire et aérienne, recalage de données, information mutuelle, super-résolution, scènes urbaines, extraction de bâtiments, grande échelle.

High-Level Data Fusion
Author : Subrata Das
Publisher : Artech House
Release Date : 2008-01-01
ISBN 10 : 1596932821
Pages : 393 pages

The book explores object and situation fusion processes with an appropriate handling of uncertainties, and applies cutting-edge artificial intelligence and emerging technologies like particle filtering, spatiotemporal clustering, net-centricity, agent formalism, and distributed fusion together with essential Level 1 techniques and Level 1/2 interactions.

Intelligent Data Mining and Fusion Systems in Agriculture
Author : Xanthoula-Eirini Pantazi,Dimitrios Moshou,Dionysis Bochtis
Publisher : Academic Press
Release Date : 2019-10-08
ISBN 10 : 0128143924
Pages : 330 pages

Intelligent Data Mining and Fusion Systems in Agriculture presents methods of computational intelligence and data fusion that have applications in agriculture for the non-destructive testing of agricultural products and crop condition monitoring. Sections cover the combination of sensors with artificial intelligence architectures in precision agriculture, including algorithms, bio-inspired hierarchical neural maps, and novelty detection algorithms capable of detecting sudden changes in different conditions. This book offers advanced students and entry-level professionals in agricultural science and engineering, geography and geoinformation science an in-depth overview of the connection between decision-making in agricultural operations and the decision support features offered by advanced computational intelligence algorithms. Covers crop protection, automation in agriculture, artificial intelligence in agriculture, sensing and Internet of Things (IoTs) in agriculture Addresses AI use in weed management, disease detection, yield prediction and crop production Utilizes case studies to provide real-world insights and direction

Applications of NDT Data Fusion
Author : Xavier E. Gros
Publisher : Springer Science & Business Media
Release Date : 2013-11-27
ISBN 10 : 1461514118
Pages : 277 pages

Non-destructive testing (NDT) systems can generate incomplete, incorrect or conflicting information about a flaw or a defect. Therefore, the use of more than one NDT system is usually required for accurate defect detection and/or quantification. In addition to a reduction in inspection time, important cost savings could be achieved if a data fusion process is developed to combine signals from multisensor systems for manual and remotely operated inspections. This gathering of data from multiple sources and an efficient processing of information help in decision making, reduce signal uncertainty and increase the overall performance of a non-destructive examination. This book gathers, for the first time, essays from leading NDT experts involved in data fusion. It explores the concept of data fusion by providing a comprehensive review and analysis of the applications of NDT data fusion. This publication concentrates on NDT data fusion for industrial applications and highlights progress and applications in the field of data fusion in areas ranging from materials testing in the aerospace industry to medical applications. Each chapter contains a specific case study with a theoretical part but also presents experimental results from a practical point of view. The book should be considered more as a pragmatic introduction to the applications of NDT data fusion rather than a rigorous basis for theoretical studies.

Multi-Sensor Data Fusion
Author : H.B. Mitchell
Publisher : Springer Science & Business Media
Release Date : 2007-07-13
ISBN 10 : 3540715592
Pages : 282 pages

This textbook provides a comprehensive introduction to the theories and techniques of multi-sensor data fusion. It is aimed at advanced undergraduate and first-year graduate students in electrical engineering and computer science, as well as researchers and professional engineers. The book is intended to be self-contained. No previous knowledge of multi-sensor data fusion is assumed, although some familiarity with the basic tools of linear algebra, calculus and simple probability theory is recommended.