biosignal processing and classification using computational learning and intelligence

Download Biosignal Processing And Classification Using Computational Learning And Intelligence ebooks in PDF, epub, tuebl, textbook from Skinvaders.Com. Read online Biosignal Processing And Classification Using Computational Learning And Intelligence books on any device easily. We cannot guarantee that Biosignal Processing And Classification Using Computational Learning And Intelligence book is available. Click download or Read Online button to get book, you can choose FREE Trial service. READ as many books as you like (Personal use).

Biosignal Processing and Classification Using Computational Learning and Intelligence
Author : Alejandro Antonio Torres Garcia,Carlos Alberto Reyes Garcia,Luis Villasenor-Pineda,Omar Mendoza Montoya
Publisher : Academic Press
Release Date : 2021-10-15
ISBN 10 : 9780128201251
Pages : 432 pages
GET BOOK!

Biosignal Processing and Classification Using Computational Learning and Intelligence: Principles, Algorithms and Applications posits an approach for biosignal processing and classification using computational learning and intelligence, highlighting that the term biosignal refers to all kinds of signals that can be continuously measured and monitored in living beings. The book is composed of four relevant parts. Part One is an introduction to biosignals and their processing. Part Two presents the fundamentals of computational learning (machine learning). Then, the main techniques of computational intelligence are described along with the hybrid systems, which are the resulting combinations of these techniques. The authors focus primarily on the explanation of the most used methods in the last part of this book, which is the most extensive portion of the book. This part consists of a recapitulation of the newest applications in which these techniques have been successfully applied to the biosignals' domain, including EEG-based Brain-Computer Interfaces (BCI), emotion recognition from voice, leukemia recognition, infant cry recognition, epilepsy diagnosis from EEG, and automatic smell recognition. Provides coverage of the fundamentals of signal processing, including sensing the heart, sending the brain, sensing human acoustic, and sensing other organs Includes coverage biosignal pre-processing techniques such as filtering, artifiact removal, and feature extraction techniques such as Fourier transform, wavelet transform, and MFCC Covers the latest techniques in machine learning and computational intelligence, including Supervised Learning, common classifiers, feature selection, dimensionality reduction, fuzzy logic, neural networks, Deep Learning, bio-inspired algorithms, and Hybrid Systems Written by engineers to help engineers, computer scientists, researchers, and clinicians understand the technology and applications of computational learning to biosignal processing

Machine Learning in Bio-Signal Analysis and Diagnostic Imaging
Author : Nilanjan Dey,Surekha Borra,Amira S. Ashour,Fuqian Shi
Publisher : Academic Press
Release Date : 2018-11-30
ISBN 10 : 012816087X
Pages : 345 pages
GET BOOK!

Machine Learning in Bio-Signal Analysis and Diagnostic Imaging presents original research on the advanced analysis and classification techniques of biomedical signals and images that cover both supervised and unsupervised machine learning models, standards, algorithms, and their applications, along with the difficulties and challenges faced by healthcare professionals in analyzing biomedical signals and diagnostic images. These intelligent recommender systems are designed based on machine learning, soft computing, computer vision, artificial intelligence and data mining techniques. Classification and clustering techniques, such as PCA, SVM, techniques, Naive Bayes, Neural Network, Decision trees, and Association Rule Mining are among the approaches presented. The design of high accuracy decision support systems assists and eases the job of healthcare practitioners and suits a variety of applications. Integrating Machine Learning (ML) technology with human visual psychometrics helps to meet the demands of radiologists in improving the efficiency and quality of diagnosis in dealing with unique and complex diseases in real time by reducing human errors and allowing fast and rigorous analysis. The book's target audience includes professors and students in biomedical engineering and medical schools, researchers and engineers. Examines a variety of machine learning techniques applied to bio-signal analysis and diagnostic imaging Discusses various methods of using intelligent systems based on machine learning, soft computing, computer vision, artificial intelligence and data mining Covers the most recent research on machine learning in imaging analysis and includes applications to a number of domains

Biomedical Signal Processing and Artificial Intelligence in Healthcare
Author : Walid A. Zgallai
Publisher : Academic Press
Release Date : 2020-07-29
ISBN 10 : 0128189479
Pages : 268 pages
GET BOOK!

Biomedical Signal Processing and Artificial Intelligence in Healthcare is a new volume in the Developments in Biomedical Engineering and Bioelectronics series. This volume covers the basics of biomedical signal processing and artificial intelligence. It explains the role of machine learning in relation to processing biomedical signals and the applications in medicine and healthcare. The book provides background to statistical analysis in biomedical systems. Several types of biomedical signals are introduced and analyzed, including ECG and EEG signals. The role of Deep Learning, Neural Networks, and the implications of the expansion of artificial intelligence is covered. Biomedical Images are also introduced and processed, including segmentation, classification, and detection. This book covers different aspects of signals, from the use of hardware and software, and making use of artificial intelligence in problem solving. Dr Zgallai’s book has up to date coverage where readers can find the latest information, easily explained, with clear examples and illustrations. The book includes examples on the application of signal and image processing employing artificial intelligence to Alzheimer, Parkinson, ADHD, autism, and sleep disorders, as well as ECG and EEG signals. Developments in Biomedical Engineering and Bioelectronics is a 10-volume series which covers recent developments, trends and advances in this field. Edited by leading academics in the field, and taking a multidisciplinary approach, this series is a forum for cutting-edge, contemporary review articles and contributions from key ‘up-and-coming’ academics across the full subject area. The series serves a wide audience of university faculty, researchers and students, as well as industry practitioners. Coverage of the subject area and the latest advances and applications in biomedical signal processing and Artificial Intelligence. Contributions by recognized researchers and field leaders. On-line presentations, tutorials, application and algorithm examples.

Machine Intelligence and Signal Processing
Author : Sonali Agarwal,Shekhar Verma,Dharma P. Agrawal
Publisher : Springer Nature
Release Date : 2020-02-25
ISBN 10 : 981151366X
Pages : 466 pages
GET BOOK!

This book features selected high-quality research papers presented at the International Conference on Machine Intelligence and Signal Processing (MISP 2019), held at the Indian Institute of Technology, Allahabad, India, on September 7–10, 2019. The book covers the latest advances in the fields of machine learning, big data analytics, signal processing, computational learning theory, and their real-time applications. The topics covered include support vector machines (SVM) and variants like least-squares SVM (LS-SVM) and twin SVM (TWSVM), extreme learning machine (ELM), artificial neural network (ANN), and other areas in machine learning. Further, it discusses the real-time challenges involved in processing big data and adapting the algorithms dynamically to improve the computational efficiency. Lastly, it describes recent developments in processing signals, for instance, signals generated from IoT devices, smart systems, speech, and videos and addresses biomedical signal processing: electrocardiogram (ECG) and electroencephalogram (EEG).

Machine Intelligence and Signal Analysis
Author : M. Tanveer,Ram Bilas Pachori
Publisher : Springer
Release Date : 2018-08-07
ISBN 10 : 981130923X
Pages : 767 pages
GET BOOK!

The book covers the most recent developments in machine learning, signal analysis, and their applications. It covers the topics of machine intelligence such as: deep learning, soft computing approaches, support vector machines (SVMs), least square SVMs (LSSVMs) and their variants; and covers the topics of signal analysis such as: biomedical signals including electroencephalogram (EEG), magnetoencephalography (MEG), electrocardiogram (ECG) and electromyogram (EMG) as well as other signals such as speech signals, communication signals, vibration signals, image, and video. Further, it analyzes normal and abnormal categories of real-world signals, for example normal and epileptic EEG signals using numerous classification techniques. The book is envisioned for researchers and graduate students in Computer Science and Engineering, Electrical Engineering, Applied Mathematics, and Biomedical Signal Processing.

Practical Machine Learning for Data Analysis Using Python
Author : Abdulhamit Subasi
Publisher : Academic Press
Release Date : 2020-06-05
ISBN 10 : 0128213809
Pages : 534 pages
GET BOOK!

Practical Machine Learning for Data Analysis Using Python is a problem solver’s guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems. Offers a comprehensive overview of the application of machine learning tools in data analysis across a wide range of subject areas Teaches readers how to apply machine learning techniques to biomedical signals, financial data, and healthcare data Explores important classification and regression algorithms as well as other machine learning techniques Explains how to use Python to handle data extraction, manipulation, and exploration techniques, as well as how to visualize data spread across multiple dimensions and extract useful features

Machine Learning in Bio-Signal Analysis and Diagnostic Imaging
Author : Nilanjan Dey,Surekha Borra,Amira S. Ashour,Fuqian Shi
Publisher : Academic Press
Release Date : 2018-11-30
ISBN 10 : 012816087X
Pages : 345 pages
GET BOOK!

Machine Learning in Bio-Signal Analysis and Diagnostic Imaging presents original research on the advanced analysis and classification techniques of biomedical signals and images that cover both supervised and unsupervised machine learning models, standards, algorithms, and their applications, along with the difficulties and challenges faced by healthcare professionals in analyzing biomedical signals and diagnostic images. These intelligent recommender systems are designed based on machine learning, soft computing, computer vision, artificial intelligence and data mining techniques. Classification and clustering techniques, such as PCA, SVM, techniques, Naive Bayes, Neural Network, Decision trees, and Association Rule Mining are among the approaches presented. The design of high accuracy decision support systems assists and eases the job of healthcare practitioners and suits a variety of applications. Integrating Machine Learning (ML) technology with human visual psychometrics helps to meet the demands of radiologists in improving the efficiency and quality of diagnosis in dealing with unique and complex diseases in real time by reducing human errors and allowing fast and rigorous analysis. The book's target audience includes professors and students in biomedical engineering and medical schools, researchers and engineers. Examines a variety of machine learning techniques applied to bio-signal analysis and diagnostic imaging Discusses various methods of using intelligent systems based on machine learning, soft computing, computer vision, artificial intelligence and data mining Covers the most recent research on machine learning in imaging analysis and includes applications to a number of domains

Machine Intelligence and Signal Processing
Author : Richa Singh,Mayank Vatsa,Angshul Majumdar,Ajay Kumar
Publisher : Springer
Release Date : 2015-10-01
ISBN 10 : 8132226259
Pages : 163 pages
GET BOOK!

This book comprises chapters on key problems in machine learning and signal processing arenas. The contents of the book are a result of a 2014 Workshop on Machine Intelligence and Signal Processing held at the Indraprastha Institute of Information Technology. Traditionally, signal processing and machine learning were considered to be separate areas of research. However in recent times the two communities are getting closer. In a very abstract fashion, signal processing is the study of operator design. The contributions of signal processing had been to device operators for restoration, compression, etc. Applied Mathematicians were more interested in operator analysis. Nowadays signal processing research is gravitating towards operator learning – instead of designing operators based on heuristics (for example wavelets), the trend is to learn these operators (for example dictionary learning). And thus, the gap between signal processing and machine learning is fast converging. The 2014 Workshop on Machine Intelligence and Signal Processing was one of the few unique events that are focused on the convergence of the two fields. The book is comprised of chapters based on the top presentations at the workshop. This book has three chapters on various topics of biometrics – two are on face detection and one on iris recognition; all from top researchers in their field. There are four chapters on different biomedical signal / image processing problems. Two of these are on retinal vessel classification and extraction; one on biomedical signal acquisition and the fourth one on region detection. There are three chapters on data analysis – a topic gaining immense popularity in industry and academia. One of these shows a novel use of compressed sensing in missing sales data interpolation. Another chapter is on spam detection and the third one is on simple one-shot movie rating prediction. Four other chapters cover various cutting edge miscellaneous topics on character recognition, software effort prediction, speech recognition and non-linear sparse recovery. The contents of this book will prove useful to researchers, professionals and students in the domains of machine learning and signal processing.

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques
Author : Abdulhamit Subasi
Publisher : Academic Press
Release Date : 2019-03-16
ISBN 10 : 0128176733
Pages : 456 pages
GET BOOK!

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques: A MATLAB Based Approach presents how machine learning and biomedical signal processing methods can be used in biomedical signal analysis. Different machine learning applications in biomedical signal analysis, including those for electrocardiogram, electroencephalogram and electromyogram are described in a practical and comprehensive way, helping readers with limited knowledge. Sections cover biomedical signals and machine learning techniques, biomedical signals, such as electroencephalogram (EEG), electromyogram (EMG) and electrocardiogram (ECG), different signal-processing techniques, signal de-noising, feature extraction and dimension reduction techniques, such as PCA, ICA, KPCA, MSPCA, entropy measures, and other statistical measures, and more. This book is a valuable source for bioinformaticians, medical doctors and other members of the biomedical field who need a cogent resource on the most recent and promising machine learning techniques for biomedical signals analysis. Provides comprehensive knowledge in the application of machine learning tools in biomedical signal analysis for medical diagnostics, brain computer interface and man/machine interaction Explains how to apply machine learning techniques to EEG, ECG and EMG signals Gives basic knowledge on predictive modeling in biomedical time series and advanced knowledge in machine learning for biomedical time series

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques
Author : Abdulhamit Subasi
Publisher : Academic Press
Release Date : 2019-03-16
ISBN 10 : 0128176733
Pages : 456 pages
GET BOOK!

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques: A MATLAB Based Approach presents how machine learning and biomedical signal processing methods can be used in biomedical signal analysis. Different machine learning applications in biomedical signal analysis, including those for electrocardiogram, electroencephalogram and electromyogram are described in a practical and comprehensive way, helping readers with limited knowledge. Sections cover biomedical signals and machine learning techniques, biomedical signals, such as electroencephalogram (EEG), electromyogram (EMG) and electrocardiogram (ECG), different signal-processing techniques, signal de-noising, feature extraction and dimension reduction techniques, such as PCA, ICA, KPCA, MSPCA, entropy measures, and other statistical measures, and more. This book is a valuable source for bioinformaticians, medical doctors and other members of the biomedical field who need a cogent resource on the most recent and promising machine learning techniques for biomedical signals analysis. Provides comprehensive knowledge in the application of machine learning tools in biomedical signal analysis for medical diagnostics, brain computer interface and man/machine interaction Explains how to apply machine learning techniques to EEG, ECG and EMG signals Gives basic knowledge on predictive modeling in biomedical time series and advanced knowledge in machine learning for biomedical time series

Signal Processing and Machine Learning for Biomedical Big Data
Author : Ervin Sejdic,Tiago H. Falk
Publisher : CRC Press
Release Date : 2018-07-04
ISBN 10 : 1351061216
Pages : 606 pages
GET BOOK!

This will be a comprehensive, multi-contributed reference work that will detail the latest research and developments in biomedical signal processing related to big data medical analysis. It will describe signal processing, machine learning, and parallel computing strategies to revolutionize the world of medical analytics and diagnosis as presented by world class researchers and experts in this important field. The chapters will desribe tools that can be used by biomedical and clinical practitioners as well as industry professionals. It will give signal processing researchers a glimpse into the issues faced with Big Medical Data.

Classification and Clustering in Biomedical Signal Processing
Author : Dey, Nilanjan
Publisher : IGI Global
Release Date : 2016-04-07
ISBN 10 : 152250141X
Pages : 463 pages
GET BOOK!

Advanced techniques in image processing have led to many innovations supporting the medical field, especially in the area of disease diagnosis. Biomedical imaging is an essential part of early disease detection and often considered a first step in the proper management of medical pathological conditions. Classification and Clustering in Biomedical Signal Processing focuses on existing and proposed methods for medical imaging, signal processing, and analysis for the purposes of diagnosing and monitoring patient conditions. Featuring the most recent empirical research findings in the areas of signal processing for biomedical applications with an emphasis on classification and clustering techniques, this essential publication is designed for use by medical professionals, IT developers, and advanced-level graduate students.