big data in astronomy

Download Big Data In Astronomy ebooks in PDF, epub, tuebl, textbook from Skinvaders.Com. Read online Big Data In Astronomy books on any device easily. We cannot guarantee that Big Data In Astronomy book is available. Click download or Read Online button to get book, you can choose FREE Trial service. READ as many books as you like (Personal use).

Big Data in Astronomy
Author : Chris Broekema,Linghe Kong,Tian Huang,Yongxin Zhu,Shenghua Yu
Publisher : Elsevier
Release Date : 2020-06-13
ISBN 10 : 012819085X
Pages : 438 pages
GET BOOK!

Big Data in Radio Astronomy: Scientific Data Processing for Advanced Radio Telescopes provides the latest research developments in big data methods and techniques for radio astronomy. Providing examples from such projects as the Square Kilometer Array (SKA), the world’s largest radio telescope that generates over an Exabyte of data every day, the book offers solutions for coping with the challenges and opportunities presented by the exponential growth of astronomical data. Presenting state-of-the-art results and research, this book is a timely reference for both practitioners and researchers working in radio astronomy, as well as students looking for a basic understanding of big data in astronomy. Bridges the gap between radio astronomy and computer science Includes coverage of the observation lifecycle as well as data collection, processing and analysis Presents state-of-the-art research and techniques in big data related to radio astronomy Utilizes real-world examples, such as Square Kilometer Array (SKA) and Five-hundred-meter Aperture Spherical radio Telescope (FAST)

Knowledge Discovery in Big Data from Astronomy and Earth Observation
Author : Petr Skoda,Fathalrahman Adam
Publisher : Elsevier
Release Date : 2020-04-10
ISBN 10 : 0128191554
Pages : 472 pages
GET BOOK!

Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics bridges the gap between astronomy and geoscience in the context of applications, techniques and key principles of big data. Machine learning and parallel computing are increasingly becoming cross-disciplinary as the phenomena of Big Data is becoming common place. This book provides insight into the common workflows and data science tools used for big data in astronomy and geoscience. After establishing similarity in data gathering, pre-processing and handling, the data science aspects are illustrated in the context of both fields. Software, hardware and algorithms of big data are addressed. Finally, the book offers insight into the emerging science which combines data and expertise from both fields in studying the effect of cosmos on the earth and its inhabitants. Addresses both astronomy and geosciences in parallel, from a big data perspective Includes introductory information, key principles, applications and the latest techniques Well-supported by computing and information science-oriented chapters to introduce the necessary knowledge in these fields

Knowledge Discovery in Big Data from Astronomy and Earth Observation
Author : Petr Skoda,Fathalrahman Adam
Publisher : N.A
Release Date : 2020-03
ISBN 10 : 0128191546
Pages : 400 pages
GET BOOK!

Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics bridges the gap between astronomy and geoscience in the context of applications, techniques and key principles of big data. Machine learning and parallel computing are increasingly becoming cross-disciplinary as the phenomena of Big Data is becoming common place. This book provides insight into the common workflows and data science tools used for big data in astronomy and geoscience. After establishing similarity in data gathering, pre-processing and handling, the data science aspects are illustrated in the context of both fields. Software, hardware and algorithms of big data are addressed. Finally, the book offers insight into the emerging science which combines data and expertise from both fields in studying the effect of cosmos on the earth and its inhabitants.

Advances in Machine Learning and Data Mining for Astronomy
Author : Michael J. Way,Jeffrey D. Scargle,Kamal M. Ali,Ashok N. Srivastava
Publisher : CRC Press
Release Date : 2012-03-29
ISBN 10 : 1439841748
Pages : 744 pages
GET BOOK!

Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines

Advances in Self-Organizing Maps and Learning Vector Quantization
Author : Erzsébet Merényi,Michael J. Mendenhall,Patrick O'Driscoll
Publisher : Springer
Release Date : 2016-01-07
ISBN 10 : 3319285181
Pages : 370 pages
GET BOOK!

This book contains the articles from the international conference 11th Workshop on Self-Organizing Maps 2016 (WSOM 2016), held at Rice University in Houston, Texas, 6-8 January 2016. WSOM is a biennial international conference series starting with WSOM'97 in Helsinki, Finland, under the guidance and direction of Professor Tuevo Kohonen (Emeritus Professor, Academy of Finland). WSOM brings together the state-of-the-art theory and applications in Competitive Learning Neural Networks: SOMs, LVQs and related paradigms of unsupervised and supervised vector quantization.The current proceedings present the expert body of knowledge of 93 authors from 15 countries in 31 peer reviewed contributions. It includes papers and abstracts from the WSOM 2016 invited speakers representing leading researchers in the theory and real-world applications of Self-Organizing Maps and Learning Vector Quantization: Professor Marie Cottrell (Universite Paris 1 Pantheon Sorbonne, France), Professor Pablo Estevez (University of Chile and Millennium Instituteof Astrophysics, Chile), and Professor Risto Miikkulainen (University of Texas at Austin, USA). The book comprises a diverse set of theoretical works on Self-Organizing Maps, Neural Gas, Learning Vector Quantization and related topics, and an excellent variety of applications to data visualization, clustering, classification, language processing, robotic control, planning, and to the analysis of astronomical data, brain images, clinical data, time series, and agricultural data.

Statistics, Data Mining, and Machine Learning in Astronomy
Author : Željko Ivezić,Andrew J. Connolly,Jacob T VanderPlas,Alexander Gray
Publisher : Princeton University Press
Release Date : 2014-01-12
ISBN 10 : 0691151687
Pages : 560 pages
GET BOOK!

As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets Features real-world data sets from contemporary astronomical surveys Uses a freely available Python codebase throughout Ideal for students and working astronomers

Astronomy and Big Data
Author : Kieran Jay Edwards,Mohamed Medhat Gaber
Publisher : Springer Science & Business Media
Release Date : 2014-04-12
ISBN 10 : 3319065998
Pages : 105 pages
GET BOOK!

With the onset of massive cosmological data collection through media such as the Sloan Digital Sky Survey (SDSS), galaxy classification has been accomplished for the most part with the help of citizen science communities like Galaxy Zoo. Seeking the wisdom of the crowd for such Big Data processing has proved extremely beneficial. However, an analysis of one of the Galaxy Zoo morphological classification data sets has shown that a significant majority of all classified galaxies are labelled as “Uncertain”. This book reports on how to use data mining, more specifically clustering, to identify galaxies that the public has shown some degree of uncertainty for as to whether they belong to one morphology type or another. The book shows the importance of transitions between different data mining techniques in an insightful workflow. It demonstrates that Clustering enables to identify discriminating features in the analysed data sets, adopting a novel feature selection algorithms called Incremental Feature Selection (IFS). The book shows the use of state-of-the-art classification techniques, Random Forests and Support Vector Machines to validate the acquired results. It is concluded that a vast majority of these galaxies are, in fact, of spiral morphology with a small subset potentially consisting of stars, elliptical galaxies or galaxies of other morphological variants.

Statistical Methods for Astronomical Data Analysis
Author : Asis Kumar Chattopadhyay,Tanuka Chattopadhyay
Publisher : Springer
Release Date : 2014-10-01
ISBN 10 : 149391507X
Pages : 349 pages
GET BOOK!

This book introduces “Astrostatistics” as a subject in its own right with rewarding examples, including work by the authors with galaxy and Gamma Ray Burst data to engage the reader. This includes a comprehensive blending of Astrophysics and Statistics. The first chapter’s coverage of preliminary concepts and terminologies for astronomical phenomenon will appeal to both Statistics and Astrophysics readers as helpful context. Statistics concepts covered in the book provide a methodological framework. A unique feature is the inclusion of different possible sources of astronomical data, as well as software packages for converting the raw data into appropriate forms for data analysis. Readers can then use the appropriate statistical packages for their particular data analysis needs. The ideas of statistical inference discussed in the book help readers determine how to apply statistical tests. The authors cover different applications of statistical techniques already developed or specifically introduced for astronomical problems, including regression techniques, along with their usefulness for data set problems related to size and dimension. Analysis of missing data is an important part of the book because of its significance for work with astronomical data. Both existing and new techniques related to dimension reduction and clustering are illustrated through examples. There is detailed coverage of applications useful for classification, discrimination, data mining and time series analysis. Later chapters explain simulation techniques useful for the development of physical models where it is difficult or impossible to collect data. Finally, coverage of the many R programs for techniques discussed makes this book a fantastic practical reference. Readers may apply what they learn directly to their data sets in addition to the data sets included by the authors.

Astrostatistics
Author : Gutti Jogesh Babu,E.D. Feigelson
Publisher : CRC Press
Release Date : 1996-08-01
ISBN 10 : 9780412983917
Pages : 224 pages
GET BOOK!

Modern astronomers encounter a vast range of challenging statistical problems, yet few are familiar with the wealth of techniques developed by statisticians. Conversely, few statisticians deal with the compelling problems confronted in astronomy. Astrostatistics bridges this gap. Authored by a statistician-astronomer team, it provides professionals and advanced students in both fields with exposure to issues of mutual interest. In the first half of the book the authors introduce statisticians to stellar, galactic, and cosmological astronomy and discuss the complex character of astronomical data. For astronomers, they introduce the statistical principles of nonparametrics, multivariate analysis, time series analysis, density estimation, and resampling methods. The second half of the book is organized by statistical topic. Each chapter contains examples of problems encountered astronomical research and highlights methodological issues. The final chapter explores some controversial issues in astronomy that have a strong statistical component. The authors provide an extensive bibliography and references to software for implementing statistical methods. The "marriage" of astronomy and statistics is a natural one and benefits both disciplines. Astronomers need the tools and methods of statistics to interpret the vast amount of data they generate, and the issues related to astronomical data pose intriguing challenges for statisticians. Astrostatistics paves the way to improved statistical analysis of astronomical data and provides a common ground for future collaboration between the two fields.

Data Science Landscape
Author : Usha Mujoo Munshi,Neeta Verma
Publisher : Springer
Release Date : 2018-03-01
ISBN 10 : 9811075158
Pages : 339 pages
GET BOOK!

The edited volume deals with different contours of data science with special reference to data management for the research innovation landscape. The data is becoming pervasive in all spheres of human, economic and development activity. In this context, it is important to take stock of what is being done in the data management area and begin to prioritize, consider and formulate adoption of a formal data management system including citation protocols for use by research communities in different disciplines and also address various technical research issues. The volume, thus, focuses on some of these issues drawing typical examples from various domains. The idea of this work germinated from the two day workshop on “Big and Open Data – Evolving Data Science Standards and Citation Attribution Practices”, an international workshop, led by the ICSU-CODATA and attended by over 300 domain experts. The Workshop focused on two priority areas (i) Big and Open Data: Prioritizing, Addressing and Establishing Standards and Good Practices and (ii) Big and Open Data: Data Attribution and Citation Practices. This important international event was part of a worldwide initiative led by ICSU, and the CODATA-Data Citation Task Group. In all, there are 21 chapters (with 21st Chapter addressing four different core aspects) written by eminent researchers in the field which deal with key issues of S&T, institutional, financial, sustainability, legal, IPR, data protocols, community norms and others, that need attention related to data management practices and protocols, coordinate area activities, and promote common practices and standards of the research community globally. In addition to the aspects touched above, the national / international perspectives of data and its various contours have also been portrayed through case studies in this volume.

Data Science and Big Data Analytics
Author : EMC Education Services
Publisher : John Wiley & Sons
Release Date : 2015-01-05
ISBN 10 : 1118876059
Pages : 432 pages
GET BOOK!

Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Corresponding data sets are available at www.wiley.com/go/9781118876138. Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today!

Astronomical Data Analysis Software and Systems XXVIII
Author : Peter Johannes Teuben,Marc W. Pound,Brian A. Thomas,Elizabeth M. Warner
Publisher : N.A
Release Date : 2019
ISBN 10 : 9781583819340
Pages : 753 pages
GET BOOK!

Doing Data Science
Author : Cathy O'Neil,Rachel Schutt
Publisher : "O'Reilly Media, Inc."
Release Date : 2013-10-09
ISBN 10 : 144936389X
Pages : 408 pages
GET BOOK!

Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.

The Intelligent Enterprise in the Era of Big Data
Author : Venkat Srinivasan
Publisher : John Wiley & Sons
Release Date : 2016-10-10
ISBN 10 : 1118834623
Pages : 216 pages
GET BOOK!

“ … the enterprise of today has changed … wherever you sit in this new corporation … Srinivasan gives us a practical and provocative guide for rethinking our business process … calling us all to action around rapid development of our old, hierarchical structures into flexible customer centric competitive force …. A must read for today’s business leader.” Mark Nunnelly, Executive Director, MassIT, Commonwealth of Massachusetts and Managing Director, Bain Capital “’Efficiency,’ ‘agile,’ and ‘analytics’ used to be the rage. Venkat Srinivasan explains in this provocative book why organizations can no longer afford to stop there. They need to move beyond – to be ‘intelligent.’ It isn’t just theory. He’s done it.” Bharat Anand, Henry R. Byers Professor of Business Administration, Harvard Business School In the era of big data and automation, the book presents a cutting-edge approach to how enterprises should organize and function. Striking a practical balance between theory and practice, The Intelligent Enterprise in the Era of Big Data presents the enterprise architecture that identifies the power of the emerging technology environment. Beginning with an introduction to the key challenges that enterprises face, the book systematically outlines modern enterprise architecture through a detailed discussion of the inseparable elements of such architecture: efficiency, flexibility, and intelligence. This architecture enables rapid responses to market needs by sensing important developments in internal and external environments in real time. Illustrating all of these elements in an integrated fashion, The Intelligent Enterprise in the Era of Big Data also features: • A detailed discussion on issues of time-to-market and flexibility with respect to enterprise application technology • Novel analyses illustrated through extensive real-world case studies to help readers better understand the applicability of the architecture and concepts • Various applications of natural language processing to real-world business transactions • Practical approaches for designing and building intelligent enterprises The Intelligent Enterprise in the Era of Big Data is an appropriate reference for business executives, information technology professionals, data scientists, and management consultants. The book is also an excellent supplementary textbook for upper-undergraduate and graduate-level courses in business intelligence, data mining, big data, and business process automation. “a compelling vision of the next generation of organization—the intelligent enterprise—which will leverage not just big data but also unstructured text and artificial intelligence to optimize internal processes in real time … a must-read book for CEOs and CTOs in all industries.” Ravi Ramamurti, D”Amore-McKim Distinguished Professor of International Business and Strategy, and Director, Center for Emerging Markets, Northeastern University “It is about the brave new world that narrows the gap between technology and business …. The book has practical advice from a thoughtful practitioner. Intelligent automation will be a competitive strength in the future. Will your company be ready?” Victor J. Menezes, Retired Senior Vice Chairman, Citigroup Venkat Srinivasan, PhD, is Chairman and Chief Executive Officer of RAGE Frameworks, Inc., which supports the creation of intelligent business process automation solutions and cognitive intelligence solutions for global corporations. He is an entrepreneur and holds several patents in the area of knowledge-based technology architectures. He is the author of two edited volumes and over 30 peer-reviewed publications. He has served as an associate professor in the College of Business Administration at Northeastern University.

Working Papers
Author : National Research Council,Division on Engineering and Physical Sciences,Commission on Physical Sciences, Mathematics, and Applications,Board on Physics and Astronomy,Astronomy and Astrophysics Survey Committee
Publisher : National Academies Press
Release Date : 1991-02-01
ISBN 10 : 0309043832
Pages : 356 pages
GET BOOK!

This volume contains working papers on astronomy and astrophysics prepared by 15 non-National Research Council panels in areas ranging from radio astronomy to the status of the profession.

Big Data Analytics for Large-Scale Multimedia Search
Author : Stefanos Vrochidis,Benoit Huet,Edward Y. Chang,Ioannis Kompatsiaris
Publisher : John Wiley & Sons
Release Date : 2019-03-18
ISBN 10 : 111937698X
Pages : 376 pages
GET BOOK!

A timely overview of cutting edge technologies for multimedia retrieval with a special emphasis on scalability The amount of multimedia data available every day is enormous and is growing at an exponential rate, creating a great need for new and more efficient approaches for large scale multimedia search. This book addresses that need, covering the area of multimedia retrieval and placing a special emphasis on scalability. It reports the recent works in large scale multimedia search, including research methods and applications, and is structured so that readers with basic knowledge can grasp the core message while still allowing experts and specialists to drill further down into the analytical sections. Big Data Analytics for Large-Scale Multimedia Search covers: representation learning, concept and event-based video search in large collections; big data multimedia mining, large scale video understanding, big multimedia data fusion, large-scale social multimedia analysis, privacy and audiovisual content, data storage and management for big multimedia, large scale multimedia search, multimedia tagging using deep learning, interactive interfaces for big multimedia and medical decision support applications using large multimodal data. Addresses the area of multimedia retrieval and pays close attention to the issue of scalability Presents problem driven techniques with solutions that are demonstrated through realistic case studies and user scenarios Includes tables, illustrations, and figures Offers a Wiley-hosted BCS that features links to open source algorithms, data sets and tools Big Data Analytics for Large-Scale Multimedia Search is an excellent book for academics, industrial researchers, and developers interested in big multimedia data search retrieval. It will also appeal to consultants in computer science problems and professionals in the multimedia industry.

Astronomical Image and Data Analysis
Author : J.-L. Starck,F. Murtagh
Publisher : Springer Science & Business Media
Release Date : 2007-06-21
ISBN 10 : 3540330259
Pages : 338 pages
GET BOOK!

With information and scale as central themes, this comprehensive survey explains how to handle real problems in astronomical data analysis using a modern arsenal of powerful techniques. It treats those innovative methods of image, signal, and data processing that are proving to be both effective and widely relevant. The authors are leaders in this rapidly developing field and draw upon decades of experience. They have been playing leading roles in international projects such as the Virtual Observatory and the Grid. The book addresses not only students and professional astronomers and astrophysicists, but also serious amateur astronomers and specialists in earth observation, medical imaging, and data mining. The coverage includes chapters or appendices on: detection and filtering; image compression; multichannel, multiscale, and catalog data analytical methods; wavelets transforms, Picard iteration, and software tools. This second edition of Starck and Murtagh's highly appreciated reference again deals with topics that are at or beyond the state of the art. It presents material which is more algorithmically oriented than most alternatives and broaches new areas like ridgelet and curvelet transforms. Throughout the book various additions and updates have been made.

Big Data Analytics in Genomics
Author : Ka-Chun Wong
Publisher : Springer
Release Date : 2016-10-24
ISBN 10 : 3319412795
Pages : 428 pages
GET BOOK!

This contributed volume explores the emerging intersection between big data analytics and genomics. Recent sequencing technologies have enabled high-throughput sequencing data generation for genomics resulting in several international projects which have led to massive genomic data accumulation at an unprecedented pace. To reveal novel genomic insights from this data within a reasonable time frame, traditional data analysis methods may not be sufficient or scalable, forcing the need for big data analytics to be developed for genomics. The computational methods addressed in the book are intended to tackle crucial biological questions using big data, and are appropriate for either newcomers or veterans in the field.This volume offers thirteen peer-reviewed contributions, written by international leading experts from different regions, representing Argentina, Brazil, China, France, Germany, Hong Kong, India, Japan, Spain, and the USA. In particular, the book surveys three main areas: statistical analytics, computational analytics, and cancer genome analytics. Sample topics covered include: statistical methods for integrative analysis of genomic data, computation methods for protein function prediction, and perspectives on machine learning techniques in big data mining of cancer. Self-contained and suitable for graduate students, this book is also designed for bioinformaticians, computational biologists, and researchers in communities ranging from genomics, big data, molecular genetics, data mining, biostatistics, biomedical science, cancer research, medical research, and biology to machine learning and computer science. Readers will find this volume to be an essential read for appreciating the role of big data in genomics, making this an invaluable resource for stimulating further research on the topic.

Astronomical Data Analysis Software and Systems XXVI
Author : Marco Molinaro,Keith Shortridge,Fabio Pasian
Publisher : N.A
Release Date : 2019
ISBN 10 : 9781583819302
Pages : 788 pages
GET BOOK!

Spatial Big Data Science
Author : Zhe Jiang,Shashi Shekhar
Publisher : Springer
Release Date : 2017-07-13
ISBN 10 : 3319601954
Pages : 131 pages
GET BOOK!

Emerging Spatial Big Data (SBD) has transformative potential in solving many grand societal challenges such as water resource management, food security, disaster response, and transportation. However, significant computational challenges exist in analyzing SBD due to the unique spatial characteristics including spatial autocorrelation, anisotropy, heterogeneity, multiple scales and resolutions which is illustrated in this book. This book also discusses current techniques for, spatial big data science with a particular focus on classification techniques for earth observation imagery big data. Specifically, the authors introduce several recent spatial classification techniques, such as spatial decision trees and spatial ensemble learning. Several potential future research directions are also discussed. This book targets an interdisciplinary audience including computer scientists, practitioners and researchers working in the field of data mining, big data, as well as domain scientists working in earth science (e.g., hydrology, disaster), public safety and public health. Advanced level students in computer science will also find this book useful as a reference.