assisted history matching for unconventional reservoirs

Download Assisted History Matching For Unconventional Reservoirs ebooks in PDF, epub, tuebl, textbook from Skinvaders.Com. Read online Assisted History Matching For Unconventional Reservoirs books on any device easily. We cannot guarantee that Assisted History Matching For Unconventional Reservoirs book is available. Click download or Read Online button to get book, you can choose FREE Trial service. READ as many books as you like (Personal use).

Assisted History Matching for Unconventional Reservoirs
Author : Sutthaporn Tripoppoom,Wei Yu,Kamy Sepehrnoori,Jijun Miao
Publisher : Gulf Professional Publishing
Release Date : 2021-08-01
ISBN 10 : 0128222433
Pages : 330 pages
GET BOOK!

As unconventional reservoir activity grows in demand, reservoir engineers relying on history matching are challenged with this time-consuming task in order to characterize hydraulic fracture and reservoir properties, which are expensive and difficult to obtain. Assisted History Matching for Unconventional Reservoirs delivers a critical tool for today’s engineers proposing an Assisted History Matching (AHM) workflow. The AHM workflow has benefits of quantifying uncertainty without bias or being trapped in any local minima and this reference helps the engineer integrate an efficient and non-intrusive model for fractures that work with any commercial simulator. Additional benefits include various applications of field case studies such as the Marcellus shale play and visuals on the advantages and disadvantages of alternative models. Rounding out with additional references for deeper learning, Assisted History Matching for Unconventional Reservoirs gives reservoir engineers a holistic view on how to model today’s fractures and unconventional reservoirs. Provides understanding on simulations for hydraulic fractures, natural fractures, and shale reservoirs using embedded discrete fracture model (EDFM) Reviews automatic and assisted history matching algorithms including visuals on advantages and limitations of each model Captures data on uncertainties of fractures and reservoir properties for better probabilistic production forecasting and well placement

Shale Gas and Tight Oil Reservoir Simulation
Author : Wei Yu,Kamy Sepehrnoori
Publisher : Gulf Professional Publishing
Release Date : 2018-08-10
ISBN 10 : 0128138696
Pages : 430 pages
GET BOOK!

Shale Gas and Tight Oil Reservoir Simulation delivers the latest research and applications used to better manage and interpret simulating production from shale gas and tight oil reservoirs. Starting with basic fundamentals, the book then includes real field data that will not only generate reliable reserve estimation, but also predict the effective range of reservoir and fracture properties through multiple history matching solutions. Also included are new insights into the numerical modelling of CO2 injection for enhanced oil recovery in tight oil reservoirs. This information is critical for a better understanding of the impacts of key reservoir properties and complex fractures. Models the well performance of shale gas and tight oil reservoirs with complex fracture geometries Teaches how to perform sensitivity studies, history matching, production forecasts, and economic optimization for shale-gas and tight-oil reservoirs Helps readers investigate data mining techniques, including the introduction of nonparametric smoothing models

Assisted History Matching Workflow for Unconventional Reservoirs
Author : Sutthaporn Tripoppoom
Publisher : N.A
Release Date : 2019
ISBN 10 :
Pages : 448 pages
GET BOOK!

The information of fractures geometry and reservoir properties can be retrieved from the production data, which is always available at no additional cost. However, in unconventional reservoirs, it is insufficient to obtain only one realization because the non-uniqueness of history matching and subsurface uncertainties cannot be captured. Therefore, the objective of this study is to obtain multiple realizations in shale reservoirs by adopting Assisted History Matching (AHM). We used multiple proxy-based Markov Chain Monte Carlo (MCMC) algorithm and Embedded Discrete Fracture Model (EDFM) to perform AHM. The reason is that MCMC has benefits of quantifying uncertainty without bias or being trapped in any local minima. Also, using MCMC with proxy model unlocks the limitation of an infeasible number of simulations required by a traditional MCMC algorithm. For fractures modeling, EDFM can mimic fractures flow behavior with a higher computational efficiency than a traditional local grid refinement (LGR) method and more accuracy than the continuum approach. We applied the AHM workflow to actual shale gas wells. We found that the algorithm can find multiple history matching solutions and quantify the fractures and reservoir properties posterior distributions. Then, we predicted the production probabilistically. Moreover, we investigated the performance of neural network (NN) and k-nearest neighbors (KNN) as a proxy model in the proxy-based MCMC algorithm. We found that NN performed better in term of accuracy than KNN but NN required twice running time of KNN. Lastly, we studied the effect of enhanced permeability area (EPA) and natural fractures existence on the history matching solutions and production forecast. We concluded that we would over-predict fracture geometries and properties and estimated ultimate recovery (EUR) if we assumed no EPA or no natural fractures even though they actually existed. The degree of over-prediction depends on fractures and reservoir properties, EPA and natural fractures properties, which can only be quantified after performing AHM. The benefits from this study are that we can characterize fractures geometry, reservoir properties, and natural fractures in a probabilistic manner. These multiple realizations can be further used for a probabilistic production forecast, future fracturing design improvement, and infill well placement decision

Shale Analytics
Author : Shahab D. Mohaghegh
Publisher : Springer
Release Date : 2017-02-09
ISBN 10 : 3319487531
Pages : 287 pages
GET BOOK!

This book describes the application of modern information technology to reservoir modeling and well management in shale. While covering Shale Analytics, it focuses on reservoir modeling and production management of shale plays, since conventional reservoir and production modeling techniques do not perform well in this environment. Topics covered include tools for analysis, predictive modeling and optimization of production from shale in the presence of massive multi-cluster, multi-stage hydraulic fractures. Given the fact that the physics of storage and fluid flow in shale are not well-understood and well-defined, Shale Analytics avoids making simplifying assumptions and concentrates on facts (Hard Data - Field Measurements) to reach conclusions. Also discussed are important insights into understanding completion practices and re-frac candidate selection and design. The flexibility and power of the technique is demonstrated in numerous real-world situations.

Intelligent Digital Oil and Gas Fields
Author : Gustavo Carvajal,Marko Maucec,Stan Cullick
Publisher : Gulf Professional Publishing
Release Date : 2017-12-14
ISBN 10 : 012804747X
Pages : 374 pages
GET BOOK!

Intelligent Digital Oil and Gas Fields: Concepts, Collaboration, and Right-time Decisions delivers to the reader a roadmap through the fast-paced changes in the digital oil field landscape of technology in the form of new sensors, well mechanics such as downhole valves, data analytics and models for dealing with a barrage of data, and changes in the way professionals collaborate on decisions. The book introduces the new age of digital oil and gas technology and process components and provides a backdrop to the value and experience industry has achieved from these in the last few years. The book then takes the reader on a journey first at a well level through instrumentation and measurement for real-time data acquisition, and then provides practical information on analytics on the real-time data. Artificial intelligence techniques provide insights from the data. The road then travels to the "integrated asset" by detailing how companies utilize Integrated Asset Models to manage assets (reservoirs) within DOF context. From model to practice, new ways to operate smart wells enable optimizing the asset. Intelligent Digital Oil and Gas Fields is packed with examples and lessons learned from various case studies and provides extensive references for further reading and a final chapter on the "next generation digital oil field," e.g., cloud computing, big data analytics and advances in nanotechnology. This book is a reference that can help managers, engineers, operations, and IT experts understand specifics on how to filter data to create useful information, address analytics, and link workflows across the production value chain enabling teams to make better decisions with a higher degree of certainty and reduced risk. Covers multiple examples and lessons learned from a variety of reservoirs from around the world and production situations Includes techniques on change management and collaboration Delivers real and readily applicable knowledge on technical equipment, workflows and data challenges such as acquisition and quality control that make up the digital oil and gas field solutions of today Describes collaborative systems and ways of working and how companies are transitioning work force to use the technology and making more optimal decisions

Embedded Discrete Fracture Modeling and Application in Reservoir Simulation
Author : Kamy Sepehrnoori,Yifei Xu,Wei Yu
Publisher : Elsevier
Release Date : 2020-08-27
ISBN 10 : 0128196882
Pages : 304 pages
GET BOOK!

The development of naturally fractured reservoirs, especially shale gas and tight oil reservoirs, exploded in recent years due to advanced drilling and fracturing techniques. However, complex fracture geometries such as irregular fracture networks and non-planar fractures are often generated, especially in the presence of natural fractures. Accurate modelling of production from reservoirs with such geometries is challenging. Therefore, Embedded Discrete Fracture Modeling and Application in Reservoir Simulation demonstrates how production from reservoirs with complex fracture geometries can be modelled efficiently and effectively. This volume presents a conventional numerical model to handle simple and complex fractures using local grid refinement (LGR) and unstructured gridding. Moreover, it introduces an Embedded Discrete Fracture Model (EDFM) to efficiently deal with complex fractures by dividing the fractures into segments using matrix cell boundaries and creating non-neighboring connections (NNCs). A basic EDFM approach using Cartesian grids and advanced EDFM approach using Corner point and unstructured grids will be covered. Embedded Discrete Fracture Modeling and Application in Reservoir Simulation is an essential reference for anyone interested in performing reservoir simulation of conventional and unconventional fractured reservoirs. Highlights the current state-of-the-art in reservoir simulation of unconventional reservoirs Offers understanding of the impacts of key reservoir properties and complex fractures on well performance Provides case studies to show how to use the EDFM method for different needs

Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs
Author : Jianchao Cai,Xiangyun Hu
Publisher : Elsevier
Release Date : 2019-01-24
ISBN 10 : 0128172894
Pages : 352 pages
GET BOOK!

Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs presents a comprehensive look at these new methods and technologies for the petrophysical characterization of unconventional reservoirs, including recent theoretical advances and modeling on fluids transport in unconventional reservoirs. The book is a valuable tool for geoscientists and engineers working in academia and industry. Many novel technologies and approaches, including petrophysics, multi-scale modelling, rock reconstruction and upscaling approaches are discussed, along with the challenge of the development of unconventional reservoirs and the mechanism of multi-phase/multi-scale flow and transport in these structures. Includes both practical and theoretical research for the characterization of unconventional reservoirs Covers the basic approaches and mechanisms for enhanced recovery techniques in unconventional reservoirs Presents the latest research in the fluid transport processes in unconventional reservoirs

Recent trends in exploration, exploitation and processing of petroleum resources
Author : Sukumar Laik
Publisher : Tata McGraw-Hill Education
Release Date : 2009
ISBN 10 : 9780070077287
Pages : 623 pages
GET BOOK!

Unconventional Reservoir Geomechanics
Author : Mark D. Zoback,Arjun H. Kohli
Publisher : Cambridge University Press
Release Date : 2019-04-30
ISBN 10 : 1107087074
Pages : 400 pages
GET BOOK!

A comprehensive overview of the key geologic, geomechanical and engineering principles that govern the development of unconventional oil and gas reservoirs. Covering hydrocarbon-bearing formations, horizontal drilling, reservoir seismology and environmental impacts, this is an invaluable resource for geologists, geophysicists and reservoir engineers.

Uncertainty Quantification of Unconventional Reservoirs Using Assisted History Matching Methods
Author : Esmail Mohamed Khalil Eltahan
Publisher : N.A
Release Date : 2019
ISBN 10 :
Pages : 368 pages
GET BOOK!

A hallmark of unconventional reservoirs is characterization uncertainty. Assisted History Matching (AHM) methods provide attractive means for uncertainty quantification (UQ), because they yield an ensemble of qualifying models instead of a single candidate. Here we integrate embedded discrete fracture model (EDFM), one of fractured-reservoirs modeling techniques, with a commercial AHM and optimization tool. We develop a new parameterization scheme that allows for altering individual properties of multiple wells or fracture groups. The reservoir is divided into three types of regions: formation matrix; EDFM fracture groups; and stimulated rock volume (SRV) around fracture groups. The method is developed in a sleek, stand-alone form and is composed of four main steps: (1) reading parameters exported by tool; (2) generating an EDFM instance; (3) running the instance on a simulator; and (4) calculating a pre-defined objective function. We present two applications. First, we test the method on a hypothetical case with synthetic production data from two wells. Using 20 history-matching parameters, we compare the performance of five AHM algorithms. Two of which are based on Bayesian approach, two are stochastic particle-swarm optimization (PSO), and one is commercial DECE algorithm. Performance is measured with metrics, such as solutions sample size, total simulation runs, marginal parameter posterior distributions, and distributions of estimated ultimate recovery (EUR). In the second application, we assess the effect of natural fractures on UQ of a single horizontal well in the middle Bakken. This is achieved by comparing four AHM scenarios with increasingly varying natural-fracture intensity. Results of the first study show that, based on pre-set acceptance criteria, DECE fails to generate any satisfying solutions. Bayesian methods are noticeably superior to PSO, although PSO is capable to generate large number of solutions. PSO tends to be focused on narrow regions of the posteriors and seems to significantly underestimate uncertainty. Bayesian Algorithm I, a method with a proxy-based acceptance/rejection sampler, ranks first in efficiency but evidently underperforms in accuracy. Results from the second study reveal that, even though varying intensity of natural fractures cam significantly alter other model parameters, that appears not to have influence on UQ (or long-term production)

Reservoir Engineering Models: Analytical and Numerical Approaches
Author : Luis F. Ayala,Turgay Ertekin
Publisher : McGraw-Hill Education
Release Date : 2018-11-01
ISBN 10 : 9781259585630
Pages : 368 pages
GET BOOK!

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Develop, build, and deploy accurate mathematical models for hydrocarbon reservoirs This practical resource discusses the construction of reservoir models and the implementation of these models in both forward and inverse modes using numerical, analytical, empirical, and artificial intelligence techniques. Written by a pair of experts in the field, Reservoir Engineering Models: Analytical and Numerical Approaches clearly explains the complicated building processes of mathematical models and lays out cutting-edge solution protocols. Advanced chapters teach the assembly of complex physical processes using principles of physics, thermodynamics and mathematics. You will learn to optimize decision-making processes applicable to the management of field development and extraction activities. Coverage includes: •An introduction to reservoir engineering models•Mathematics of reservoir engineering•Reservoir engineering fundamentals•Hydrocarbon fluid models and thermodynamics•Reservoir engineering transport equations•Analytical and numerical reservoir engineering solutions•Proxy and hybrid models in reservoir engineering

Reservoir Engineering
Author : Abdus Satter,Ghulam M. Iqbal
Publisher : Gulf Professional Publishing
Release Date : 2015-09-22
ISBN 10 : 0128005238
Pages : 486 pages
GET BOOK!

Reservoir Engineering focuses on the fundamental concepts related to the development of conventional and unconventional reservoirs and how these concepts are applied in the oil and gas industry to meet both economic and technical challenges. Written in easy to understand language, the book provides valuable information regarding present-day tools, techniques, and technologies and explains best practices on reservoir management and recovery approaches. Various reservoir workflow diagrams presented in the book provide a clear direction to meet the challenges of the profession. As most reservoir engineering decisions are based on reservoir simulation, a chapter is devoted to introduce the topic in lucid fashion. The addition of practical field case studies make Reservoir Engineering a valuable resource for reservoir engineers and other professionals in helping them implement a comprehensive plan to produce oil and gas based on reservoir modeling and economic analysis, execute a development plan, conduct reservoir surveillance on a continuous basis, evaluate reservoir performance, and apply corrective actions as necessary. Connects key reservoir fundamentals to modern engineering applications Bridges the conventional methods to the unconventional, showing the differences between the two processes Offers field case studies and workflow diagrams to help the reservoir professional and student develop and sharpen management skills for both conventional and unconventional reservoirs