artificial intelligence in healthcare

Download Artificial Intelligence In Healthcare ebooks in PDF, epub, tuebl, textbook from Skinvaders.Com. Read online Artificial Intelligence In Healthcare books on any device easily. We cannot guarantee that Artificial Intelligence In Healthcare book is available. Click download or Read Online button to get book, you can choose FREE Trial service. READ as many books as you like (Personal use).

Artificial Intelligence in Healthcare
Author : Adam Bohr,Kaveh Memarzadeh
Publisher : Academic Press
Release Date : 2020-06-21
ISBN 10 : 0128184396
Pages : 378 pages
GET BOOK!

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. Highlights different data techniques in healthcare data analysis, including machine learning and data mining Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks Includes applications and case studies across all areas of AI in healthcare data

Artificial Intelligence in Healthcare
Author : Parag Suresh Mahajan MD
Publisher : Parag Suresh Mahajan
Release Date : 2018-07
ISBN 10 : 9789353516833
Pages : 230 pages
GET BOOK!

About the book - Artificial Intelligence in Healthcare Do you want to know the relationship between Artificial Intelligence (AI) & healthcare, & how AI is improving healthcare? Technology is evolving rapidly, & you need to keep up to stay at the top. Artificial Intelligence (AI) is revolutionizing all aspects of healthcare & this book is intended to be your companion on this journey. It's a power-packed AI book that guides you about the current state and future applications of AI in healthcare, including those under development, in a simple to understand language. It discusses the ethical concerns related to the use of AI in healthcare, principles of AI & how it works, the vital role of AI in all major medical specialties and health insurance, & the role of start-ups and corporate players in AI in healthcare. About the Author - Dr Parag Suresh Mahajan MD Dr. Parag Mahajan is an Accomplished Entrepreneurial CEO of multiple Healthcare Start-ups, Radiologist, Clinical Informatician, Teacher, Researcher, and Author. His current interests include the development of Start-ups in the fields of Artificial Intelligence in Healthcare, Blockchain in Healthcare, Electronic Health Records, and Medical eLearning Systems.

Machine Learning and AI for Healthcare
Author : Arjun Panesar
Publisher : Apress
Release Date : 2019-02-04
ISBN 10 : 1484237994
Pages : 368 pages
GET BOOK!

Explore the theory and practical applications of artificial intelligence (AI) and machine learning in healthcare. This book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare and big data challenges. You’ll discover the ethical implications of healthcare data analytics and the future of AI in population and patient health optimization. You’ll also create a machine learning model, evaluate performance and operationalize its outcomes within your organization. Machine Learning and AI for Healthcare provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of AI applications. These are illustrated through leading case studies, including how chronic disease is being redefined through patient-led data learning and the Internet of Things. What You'll Learn Gain a deeper understanding of key machine learning algorithms and their use and implementation within wider healthcare Implement machine learning systems, such as speech recognition and enhanced deep learning/AI Select learning methods/algorithms and tuning for use in healthcare Recognize and prepare for the future of artificial intelligence in healthcare through best practices, feedback loops and intelligent agents Who This Book Is For Health care professionals interested in how machine learning can be used to develop health intelligence – with the aim of improving patient health, population health and facilitating significant care-payer cost savings.

eHealth
Author : Thomas F. Heston
Publisher : BoD – Books on Demand
Release Date : 2018-08-01
ISBN 10 : 1789235227
Pages : 184 pages
GET BOOK!

eHealth has revolutionized health care and the practice of medicine. Internet technologies have given the most rural communities access to healthcare services, and automated computer algorithms are improving medical diagnoses and speeding up the delivery of care. Handheld apps, wearable devices, and artificial intelligence lead the way, creating a global healthcare solution that is smarter and more accessible. Read what leaders in the field are doing to advance the use of electronic technology to improve global health.

Healthcare and Artificial Intelligence
Author : Bernard Nordlinger,Cédric Villani,Daniela Rus
Publisher : Springer Nature
Release Date : 2020-03-17
ISBN 10 : 3030321614
Pages : 279 pages
GET BOOK!

This book provides an overview of the role of AI in medicine and, more generally, of issues at the intersection of mathematics, informatics, and medicine. It is intended for AI experts, offering them a valuable retrospective and a global vision for the future, as well as for non-experts who are curious about this timely and important subject. Its goal is to provide clear, objective, and reasonable information on the issues covered, avoiding any fantasies that the topic “AI” might evoke. In addition, the book seeks to provide a broad kaleidoscopic perspective, rather than deep technical details.

Artificial Intelligence in Precision Health
Author : Debmalya Barh
Publisher : Academic Press
Release Date : 2020-03-04
ISBN 10 : 0128173386
Pages : 544 pages
GET BOOK!

Artificial Intelligence in Precision Health: From Concept to Applications provides a readily available resource to understand artificial intelligence and its real time applications in precision medicine in practice. Written by experts from different countries and with diverse background, the content encompasses accessible knowledge easily understandable for non-specialists in computer sciences. The book discusses topics such as cognitive computing and emotional intelligence, big data analysis, clinical decision support systems, deep learning, personal omics, digital health, predictive models, prediction of epidemics, drug discovery, precision nutrition and fitness. Additionally, there is a section dedicated to discuss and analyze AI products related to precision healthcare already available. This book is a valuable source for clinicians, healthcare workers, and researchers from diverse areas of biomedical field who may or may not have computational background and want to learn more about the innovative field of artificial intelligence for precision health. Provides computational approaches used in artificial intelligence easily understandable for non-computer specialists Gives know-how and real successful cases of artificial intelligence approaches in predictive models, modeling disease physiology, and public health surveillance Discusses the applicability of AI on multiple areas, such as drug discovery, clinical trials, radiology, surgery, patient care and clinical decision support

AI in Health
Author : Tom Lawry
Publisher : CRC Press
Release Date : 2020-02-25
ISBN 10 : 1000036324
Pages : 202 pages
GET BOOK!

We are in the early stages of the next big platform shift in healthcare computing. Fueled by Artificial Intelligence (AI) and the Cloud, this shift is already transforming the way health and medical services are provided. As the industry transitions from static digital repositories to intelligent systems, there will be winners and losers in the race to innovate and automate the provision of services. Critical to success will be the role leaders play in shaping the use of AI to be less "artificial" and more "intelligent" in support of improving processes to deliver care and keep people healthy and productive across all care settings. This book defines key technical, process, people, and ethical issues that need to be understood and addressed in successfully planning and executing an enterprise-wide AI plan. It provides clinical and business leaders with a framework for moving organizations from the aspiration to execution of intelligent systems to improve clinical, operational, and financial performance.

Machine Learning with Health Care Perspective
Author : Vishal Jain,Jyotir Moy Chatterjee
Publisher : Springer Nature
Release Date : 2020-03-09
ISBN 10 : 3030408507
Pages : 415 pages
GET BOOK!

This unique book introduces a variety of techniques designed to represent, enhance and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. Providing a unique compendium of current and emerging machine learning paradigms for healthcare informatics, it reflects the diversity, complexity, and the depth and breadth of this multi-disciplinary area. Further, it describes techniques for applying machine learning within organizations and explains how to evaluate the efficacy, suitability, and efficiency of such applications. Featuring illustrative case studies, including how chronic disease is being redefined through patient-led data learning, the book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare challenges.

Deep Medicine
Author : Eric Topol
Publisher : Basic Books
Release Date : 2019-03-12
ISBN 10 : 1541644646
Pages : 400 pages
GET BOOK!

One of America's top doctors reveals how AI will empower physicians and revolutionize patient care Medicine has become inhuman, to disastrous effect. The doctor-patient relationship--the heart of medicine--is broken: doctors are too distracted and overwhelmed to truly connect with their patients, and medical errors and misdiagnoses abound. In Deep Medicine, leading physician Eric Topol reveals how artificial intelligence can help. AI has the potential to transform everything doctors do, from notetaking and medical scans to diagnosis and treatment, greatly cutting down the cost of medicine and reducing human mortality. By freeing physicians from the tasks that interfere with human connection, AI will create space for the real healing that takes place between a doctor who can listen and a patient who needs to be heard. Innovative, provocative, and hopeful, Deep Medicine shows us how the awesome power of AI can make medicine better, for all the humans involved.

Artificial Intelligence
Author : Sandeep Reddy
Publisher : CRC Press
Release Date : 2020-12-03
ISBN 10 : 1000216861
Pages : 336 pages
GET BOOK!

The rediscovery of the potential of artificial intelligence (AI) to improve healthcare delivery and patient outcomes has led to an increasing application of AI techniques such as deep learning, computer vision, natural language processing, and robotics in the healthcare domain. Many governments and health authorities have prioritized the application of AI in the delivery of healthcare. Also, technological giants and leading universities have established teams dedicated to the application of AI in medicine. These trends will mean an expanded role for AI in the provision of healthcare. Yet, there is an incomplete understanding of what AI is and its potential for use in healthcare. This book discusses the different types of AI applicable to healthcare and their application in medicine, population health, genomics, healthcare administration, and delivery. Readers, especially healthcare professionals and managers, will find the book useful to understand the different types of AI and how they are relevant to healthcare delivery. The book provides examples of AI being applied in medicine, population health, genomics, healthcare administration, and delivery and how they can commence applying AI in their health services. Researchers and technology professionals will also find the book useful to note current trends in the application of AI in healthcare and initiate their own projects to enable the application of AI in healthcare/medical domains.

Machine Learning for Healthcare
Author : Rashmi Agrawal,Jyotir Moy Chatterjee,Abhishek Kumar,Pramod Singh Rathore,Dac-Nhuong Le
Publisher : CRC Press
Release Date : 2020-12-09
ISBN 10 : 1000221881
Pages : 204 pages
GET BOOK!

Machine Learning for Healthcare: Handling and Managing Data provides in-depth information about handling and managing healthcare data through machine learning methods. This book expresses the long-standing challenges in healthcare informatics and provides rational explanations of how to deal with them. Machine Learning for Healthcare: Handling and Managing Data provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of machine learning applications. These are illustrated in a case study which examines how chronic disease is being redefined through patient-led data learning and the Internet of Things. This text offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare. Readers will discover the ethical implications of machine learning in healthcare and the future of machine learning in population and patient health optimization. This book can also help assist in the creation of a machine learning model, performance evaluation, and the operationalization of its outcomes within organizations. It may appeal to computer science/information technology professionals and researchers working in the area of machine learning, and is especially applicable to the healthcare sector. The features of this book include: A unique and complete focus on applications of machine learning in the healthcare sector. An examination of how data analysis can be done using healthcare data and bioinformatics. An investigation of how healthcare companies can leverage the tapestry of big data to discover new business values. An exploration of the concepts of machine learning, along with recent research developments in healthcare sectors.

Artificial Intelligence in Healthcare
Author : Tom Lawry
Publisher : Himss Publishing
Release Date : 2020
ISBN 10 : 9780367333713
Pages : 216 pages
GET BOOK!

We are in the early stages of the next big platform shift in healthcare computing. Fueled by Artificial Intelligence (AI) and the cloud, AI is already transforming the way health and medical services are provided. As the industry transitions from static digital repositories to intelligent systems there will be winners and losers in the race to innovate and automate the provision of services. Critical to success will be the role leaders play in shaping the use of AI to be less "artificial" and more "intelligent" in support of improving processes to deliver care and keep people healthy and productive across all care settings. This book defines key technical, process, people and ethical issues that will need to be understood and addressed in planning and executing an effective AI plan. It provides clinical and business leaders with a framework for successfully moving organizations from the aspiration to execution phase of intelligent systems to improve clinical, operational and financial performance. Written for clinical and business leaders in health, this book defines Artificial Intelligence and its role in driving digital transformation to improve clinical, operational and financial outcomes of provider, payer and public health organizations worldwide. It provides readers with an in-depth (but non-technical) look at the technology "building blocks" of AI (e.g. machine learning, cognitive services, bots) with real-world use cases cited along the way to illustrate the power of AI in healthcare settings. This book defines a practical planning framework empowering clinical, business and IT leaders to understand AI and create an organizational plan to implement intelligent solutions that increase the effectiveness of every worker in achieving the goals and objectives of health and medical organizations.

Artificial Intelligence in Behavioral and Mental Health Care
Author : David D. Luxton
Publisher : Academic Press
Release Date : 2015-09-10
ISBN 10 : 0128007923
Pages : 308 pages
GET BOOK!

Artificial Intelligence in Behavioral and Mental Health Care summarizes recent advances in artificial intelligence as it applies to mental health clinical practice. Each chapter provides a technical description of the advance, review of application in clinical practice, and empirical data on clinical efficacy. In addition, each chapter includes a discussion of practical issues in clinical settings, ethical considerations, and limitations of use. The book encompasses AI based advances in decision-making, in assessment and treatment, in providing education to clients, robot assisted task completion, and the use of AI for research and data gathering. This book will be of use to mental health practitioners interested in learning about, or incorporating AI advances into their practice and for researchers interested in a comprehensive review of these advances in one source. Summarizes AI advances for use in mental health practice Includes advances in AI based decision-making and consultation Describes AI applications for assessment and treatment Details AI advances in robots for clinical settings Provides empirical data on clinical efficacy Explores practical issues of use in clinical settings

Machine Learning for Healthcare Analytics Projects
Author : Eduonix Learning Solutions
Publisher : Packt Publishing Ltd
Release Date : 2018-10-30
ISBN 10 : 1789532523
Pages : 134 pages
GET BOOK!

Create real-world machine learning solutions using NumPy, pandas, matplotlib, and scikit-learn Key Features Develop a range of healthcare analytics projects using real-world datasets Implement key machine learning algorithms using a range of libraries from the Python ecosystem Accomplish intermediate-to-complex tasks by building smart AI applications using neural network methodologies Book Description Machine Learning (ML) has changed the way organizations and individuals use data to improve the efficiency of a system. ML algorithms allow strategists to deal with a variety of structured, unstructured, and semi-structured data. Machine Learning for Healthcare Analytics Projects is packed with new approaches and methodologies for creating powerful solutions for healthcare analytics. This book will teach you how to implement key machine learning algorithms and walk you through their use cases by employing a range of libraries from the Python ecosystem. You will build five end-to-end projects to evaluate the efficiency of Artificial Intelligence (AI) applications for carrying out simple-to-complex healthcare analytics tasks. With each project, you will gain new insights, which will then help you handle healthcare data efficiently. As you make your way through the book, you will use ML to detect cancer in a set of patients using support vector machines (SVMs) and k-Nearest neighbors (KNN) models. In the final chapters, you will create a deep neural network in Keras to predict the onset of diabetes in a huge dataset of patients. You will also learn how to predict heart diseases using neural networks. By the end of this book, you will have learned how to address long-standing challenges, provide specialized solutions for how to deal with them, and carry out a range of cognitive tasks in the healthcare domain. What you will learn Explore super imaging and natural language processing (NLP) to classify DNA sequencing Detect cancer based on the cell information provided to the SVM Apply supervised learning techniques to diagnose autism spectrum disorder (ASD) Implement a deep learning grid and deep neural networks for detecting diabetes Analyze data from blood pressure, heart rate, and cholesterol level tests using neural networks Use ML algorithms to detect autistic disorders Who this book is for Machine Learning for Healthcare Analytics Projects is for data scientists, machine learning engineers, and healthcare professionals who want to implement machine learning algorithms to build smart AI applications. Basic knowledge of Python or any programming language is expected to get the most from this book.

Artificial Intelligence in Health
Author : Fernando Koch,Andrew Koster,David Riaño,Sara Montagna,Michael Schumacher,Annette ten Teije,Christian Guttmann,Manfred Reichert,Isabelle Bichindaritz,Pau Herrero,Richard Lenz,Beatriz López,Cindy Marling,Clare Martin,Stefania Montani,Nirmalie Wiratunga
Publisher : Springer
Release Date : 2019-02-20
ISBN 10 : 3030127389
Pages : 245 pages
GET BOOK!

This book constitutes the refereed post-conference proceedings of the First International Workshop on Artificial Intelligence in Health, AIH 2018, in Stockholm, Sweden, in July 2018. This workshop consolidated the workshops CARE, KRH4C and AI4HC into a single event. The 18 revised full papers included in this volume were carefully selected from the 26 papers accepted for presentation out of 42 initial submissions. The papers present AI technologies with medical applications and are organized in three tracks: agents in healthcare; data science and decision systems in medicine; and knowledge management in healthcare.

Artificial Intelligence for Drug Development, Precision Medicine, and Healthcare
Author : Mark Chang
Publisher : CRC Press
Release Date : 2020-05-12
ISBN 10 : 1000767302
Pages : 352 pages
GET BOOK!

Artificial Intelligence for Drug Development, Precision Medicine, and Healthcare covers exciting developments at the intersection of computer science and statistics. While much of machine-learning is statistics-based, achievements in deep learning for image and language processing rely on computer science’s use of big data. Aimed at those with a statistical background who want to use their strengths in pursuing AI research, the book: · Covers broad AI topics in drug development, precision medicine, and healthcare. · Elaborates on supervised, unsupervised, reinforcement, and evolutionary learning methods. · Introduces the similarity principle and related AI methods for both big and small data problems. · Offers a balance of statistical and algorithm-based approaches to AI. · Provides examples and real-world applications with hands-on R code. · Suggests the path forward for AI in medicine and artificial general intelligence. As well as covering the history of AI and the innovative ideas, methodologies and software implementation of the field, the book offers a comprehensive review of AI applications in medical sciences. In addition, readers will benefit from hands on exercises, with included R code.

Intelligence-Based Medicine
Author : Anthony C. Chang
Publisher : Academic Press
Release Date : 2020-06-27
ISBN 10 : 0128233389
Pages : 534 pages
GET BOOK!

Intelligence-Based Medicine: Data Science, Artificial Intelligence, and Human Cognition in Clinical Medicine and Healthcare provides a multidisciplinary and comprehensive survey of artificial intelligence concepts and methodologies with real life applications in healthcare and medicine. Authored by a senior physician-data scientist, the book presents an intellectual and academic interface between the medical and the data science domains that is symmetric and balanced. The content consists of basic concepts of artificial intelligence and its real-life applications in a myriad of medical areas as well as medical and surgical subspecialties. It brings section summaries to emphasize key concepts delineated in each section; mini-topics authored by world-renowned experts in the respective key areas for their personal perspective; and a compendium of practical resources, such as glossary, references, best articles, and top companies. The goal of the book is to inspire clinicians to embrace the artificial intelligence methodologies as well as to educate data scientists about the medical ecosystem, in order to create a transformational paradigm for healthcare and medicine by using this emerging new technology. Covers a wide range of relevant topics from cloud computing, intelligent agents, to deep reinforcement learning and internet of everything Presents the concepts of artificial intelligence and its applications in an easy-to-understand format accessible to clinicians and data scientists Discusses how artificial intelligence can be utilized in a myriad of subspecialties and imagined of the future Delineates the necessary elements for successful implementation of artificial intelligence in medicine and healthcare

The AI Advantage
Author : Thomas H. Davenport
Publisher : N.A
Release Date : 2019-07-26
ISBN 10 : 0262538008
Pages : 231 pages
GET BOOK!

Cutting through the hype, a practical guide to using artificial intelligence for business benefits and competitive advantage. In The AI Advantage, Thomas Davenport offers a guide to using artificial intelligence in business. He describes what technologies are available and how companies can use them for business benefits and competitive advantage. He cuts through the hype of the AI craze--remember when it seemed plausible that IBM's Watson could cure cancer?--to explain how businesses can put artificial intelligence to work now, in the real world. His key recommendation: don't go for the "moonshot" (curing cancer, or synthesizing all investment knowledge); look for the "low-hanging fruit" to make your company more efficient. Davenport explains that the business value AI offers is solid rather than sexy or splashy. AI will improve products and processes and make decisions better informed--important but largely invisible tasks. AI technologies won't replace human workers but augment their capabilities, with smart machines to work alongside smart people. AI can automate structured and repetitive work; provide extensive analysis of data through machine learning ("analytics on steroids"), and engage with customers and employees via chatbots and intelligent agents. Companies should experiment with these technologies and develop their own expertise. Davenport describes the major AI technologies and explains how they are being used, reports on the AI work done by large commercial enterprises like Amazon and Google, and outlines strategies and steps to becoming a cognitive corporation. This book provides an invaluable guide to the real-world future of business AI. A book in the Management on the Cutting Edge series, published in cooperation with MIT Sloan Management Review.

Artificial Intelligence in Healthcare
Author : Dr Parag Suresh Mahajan MD
Publisher : N.A
Release Date : 2018-07
ISBN 10 : 9789353115579
Pages : 162 pages
GET BOOK!

About the book - Artificial Intelligence in Healthcare Do you want to know the relationship between Artificial Intelligence (AI) & healthcare, & how AI is improving healthcare? Technology is evolving rapidly, & you need to keep up to stay at the top. Artificial Intelligence (AI) is revolutionizing all aspects of healthcare & this book is intended to be your companion on this journey. It's a power-packed AI book that guides you about the current state and future applications of AI in healthcare, including those under development, in a simple to understand language. It discusses the ethical concerns related to the use of AI in healthcare, principles of AI & how it works, the vital role of AI in all major medical specialties, & the role of start-ups and corporate players in AI in healthcare.

Transforming Healthcare with Big Data and AI
Author : Mingbo Gong,Anna Farzindar,Alex Liu
Publisher : IAP
Release Date : 2020-04-01
ISBN 10 : 1641138998
Pages : 185 pages
GET BOOK!

Healthcare and technology are at a convergence point where significant changes are poised to take place. The vast and complex requirements of medical record keeping, coupled with stringent patient privacy laws, create an incredibly unwieldy maze of health data needs. While the past decade has seen giant leaps in AI, machine learning, wearable technologies, and data mining capacities that have enabled quantities of data to be accumulated, processed, and shared around the globe. Transforming Healthcare with Big Data and AI examines the crossroads of these two fields and looks to the future of leveraging advanced technologies and developing data ecosystems to the healthcare field. This book is the product of the Transforming Healthcare with Data conference, held at the University of Southern California. Many speakers and digital healthcare industry leaders contributed multidisciplinary expertise to chapters in this work. Authors’ backgrounds range from data scientists, healthcare experts, university professors, and digital healthcare entrepreneurs. If you have an understanding of data technologies and are interested in the future of Big Data and A.I. in healthcare, this book will provide a wealth of insights into the new landscape of healthcare.