analytical methods for biomass characterization and conversion

Download Analytical Methods For Biomass Characterization And Conversion ebooks in PDF, epub, tuebl, textbook from Skinvaders.Com. Read online Analytical Methods For Biomass Characterization And Conversion books on any device easily. We cannot guarantee that Analytical Methods For Biomass Characterization And Conversion book is available. Click download or Read Online button to get book, you can choose FREE Trial service. READ as many books as you like (Personal use).

Analytical Methods for Biomass Characterization and Conversion
Author : David C. Dayton,Thomas D. Foust
Publisher : Elsevier
Release Date : 2019-11-05
ISBN 10 : 0128156066
Pages : 260 pages
GET BOOK!

Analytical Methods for Biomass Characterization and Conversion is a thorough resource for researchers, students and professors who investigate the use of biomass for fuels, chemicals and products. Advanced analytical chemistry methods and techniques can now provide detailed compositional and chemical measurements of biomass, biomass conversion process streams, intermediates and products. This volume from the Emerging Issues in Analytical Chemistry series brings together the current knowledge on each of these methods, including spectroscopic methods (Fourier Transform Infrared Spectroscopy, Near-infrared Spectroscopy, Solid State Nuclear Magnetic Resonance), pyrolysis (Gas Chromatography/Mass Spectrometry), Liquid Chromatography/High Performance Liquid Chromatography, Liquid Chromatography/Mass Spectrometry, and so on. Authors David C. Dayton and Thomas D. Foust show how these can be used for measuring biomass composition and for determining the composition of intermediates with regard to subsequent processing for biofuels, bio-chemicals and bio-based products. Covers the broad range of techniques and applications that have been developed and perfected in the last decade Highlights specific analyses required for understanding biomass conversion to select intermediates Provides references to seminal books, review articles and technical articles that go into greater depth, serving as a basis for further study

Analytical Techniques and Methods for Biomass
Author : Sílvio Vaz Jr.
Publisher : Springer
Release Date : 2016-10-27
ISBN 10 : 3319414143
Pages : 280 pages
GET BOOK!

This book deals with the application of techniques and methods of chemical analysis for the study of biomass and its conversion processes, aiming to fill the current gap in the book literature on the subject. The use of various techniques and analytical methods is presented and discussed in a straightforward manner, providing the reader with the possibility of choosing the most appropriate methodologies for analysis of the major classes of plant biomass and its products. In the present volume, a select group of international specialists describes different approaches to understand the biomass structure, their physical and chemical properties, the parameters of conversion processes, the products and by-products formation and quantification, quality parameters, etc. Modern chemistry plays a strong economic role in industrial activities based on biomass, with an increasing trend of the importance of its application from the deployment of biorefineries and the principles of green chemistry, which make use of the potential of biomass with decreasing impact negative environmental. In this context, analytical chemistry can contribute significantly to the supply chains of biomass, be it plant or animal origin; however, with the first offering the greatest challenges and the greatest opportunity for technical, scientific and economic progress, given its diversified chemical constitution. Thus, the chemical analysis can be used to examine the composition for characterizing physicochemical properties and to monitor their conversion processes, in order to obtain better products and uses of biomass. The quality of the biomass used determines the product quality. Therefore, reliable information is required about the chemical composition of the biomass to establish the best use (e.g., most suitable conversion process and its conditions), which will influence harvest and preparation steps. Conversion processes should be monitored for their yield, integrity, safety, and environmental impact. Effluent or residues should be monitored and analyzed for environmental control. Co-products need to be monitored to avoid interference with the product yield and product purity; however, co-products are also a good opportunity to add value to the biomass chain. Finally, products need to be monitored and analyzed to determine their yields and purity and to ensure their quality. In this context, analytical chemistry can contribute significantly to the biomass supply chains, be it of plant or animal origin.

Valorization of Biomass to Value-Added Commodities
Author : Michael O. Daramola,Augustine O. Ayeni
Publisher : Springer Nature
Release Date : 2020-04-21
ISBN 10 : 3030380327
Pages : 595 pages
GET BOOK!

This book presents the most up-to-date technologies for the transformation of biomass into valuable fuels, chemicals, materials, and products. It provides comprehensive coverage of the characterization and fractionation of various types of biomass and details the many challenges that are currently encountered during this process. Divided into two sections, this book discusses timely topics such as the characterization of biomass feedstock, pretreatment and fractionation of biomass, and describes the process for conversion of biomass to value-added commodities. The authors bring biomass transformational strategies that are yet to be explored to the forefront, making this innovative book useful for graduate students and researchers in academia, government, and industry.

Advancements in Biomass Feedstock Preprocessing: Conversion Ready Feedstocks
Author : J. Richard Hess,Allison E. Ray,Timothy G. Rials
Publisher : Frontiers Media SA
Release Date : 2020-03-12
ISBN 10 : 2889634655
Pages : 329 pages
GET BOOK!

The success of lignocellulosic biofuels and biochemical industries depends upon an economic and reliable supply of quality biomass. However, research and development efforts have historically focused on the utilization of agriculturally-derived, cellulosic feedstocks without consideration of their low energy density, high variations in physical and chemical characteristics and potential supply risks in terms of availability and affordability. This Research Topic will explore strategies that enable supply chain improvements in biomass quality and consistency through blending, preprocessing, diversity and landscape design for development of conversion-ready, lignocellulosic feedstocks for production of biofuels and bio-products. Biomass variability has proven a formidable challenge to the emerging biorefining industry, impeding continuous operation and reducing yields required for economical production of lignocellulosic biofuels at scale. Conventional supply systems lack the preprocessing capabilities necessary to ensure consistent biomass feedstocks with physical and chemical properties that are compatible with supply chain operations and conversion processes. Direct coupling of conventional feedstock supply systems with sophisticated conversion systems has reduced the operability of biorefining processes to less than 50%. As the bioeconomy grows, the inherent variability of biomass resources cannot be managed by passive means alone. As such, there is a need to fully recognize the magnitude of biomass variability and uncertainty, as well as the cost of failing to design feedstock supply systems that can mitigate biomass variability and uncertainty. A paradigm shift is needed, from biorefinery designs using raw, single-resource biomass, to advanced feedstock supply systems that harness diverse biomass resources to enable supply chain resilience and development of conversion-ready feedstocks. Blending and preprocessing (e.g., drying, sorting, sizing, fractionation, leaching, densification, etc.) can mitigate variable quality and performance in diverse resources when integrated with downstream conversion systems. Decoupling feedstock supply from biorefining provides an opportunity to manage supply risks and incorporate value-added upgrading to develop feedstocks with improved convertibility and/ or market fungibility. Conversion-ready feedstocks have undergone the required preprocessing to ensure compatibility with conversion and utilization prior to delivery at the biorefinery and represent lignocellulosic biomass with physical and chemical properties that are tailored to meet the requirements of industrially-relevant handling and conversion systems.

Sourcebook of Methods of Analysis for Biomass and Biomass Conversion Processes
Author : T. Milne,A.H. Brennan,B.H. Glenn
Publisher : Springer Science & Business Media
Release Date : 1990-09-30
ISBN 10 : 9781851665273
Pages : 341 pages
GET BOOK!

Catalysis for the Conversion of Biomass and Its Derivatives
Author : Malte Behrens,Abhaya K. Datye
Publisher : epubli
Release Date : 2013-02-28
ISBN 10 : 3844242821
Pages : 476 pages
GET BOOK!

An introduction to the emerging field of biomass conversion.

Biomass Modification, Characterization and Process Monitoring Analytics to Support Biofuel and Biomaterial Production
Author : Robert Henry,Blake Simmons,Jason Lupoi
Publisher : Frontiers Media SA
Release Date : 2016-06-09
ISBN 10 : 2889198677
Pages : 329 pages
GET BOOK!

The conversion of lignocellulosic biomass into renewable fuels and other commodities has provided an appealing alternative towards supplanting global dependence on fossil fuels. The suitability of multitudes of plants for deconstruction to useful precursor molecules and products is currently being evaluated. These studies have probed a variety of phenotypic traits, including cellulose, non-cellulosic polysaccharide, lignin, and lignin monomer composition, glucose and xylose production following enzymatic hydrolysis, and an assessment of lignin-carbohydrate and lignin-lignin linkages, to name a few. These quintessential traits can provide an assessment of biomass recalcitrance, enabling researchers to devise appropriate deconstruction strategies. Plants with high polysaccharide and lower lignin contents have been shown to breakdown to monomeric sugars more readily. Not all plants contain ideal proportions of the various cell wall constituents, however. The capabilities of biotechnology can alleviate this conundrum by tailoring the chemical composition of plants to be more favorable for conversion to sugars, fuels, etc. Increases in the total biomass yield, cellulose content, or conversion efficiency through, for example, a reduction in lignin content, are pathways being evaluated to genetically improve plants for use in manufacturing biofuels and bio-based chemicals. Although plants have been previously domesticated for food and fiber production, the collection of phenotypic traits prerequisite for biofuel production may necessitate new genetic breeding schemes. Given the plethora of potential plants available for exploration, rapid analytical methods are needed to more efficiently screen through the bulk of samples to hone in on which feedstocks contain the desired chemistry for subsequent conversion to valuable, renewable commodities. The standard methods for analyzing biomass and related intermediates and finished products are laborious, potentially toxic, and/or destructive. They may also necessitate a complex data analysis, significantly increasing the experimental time and add unwanted delays in process monitoring, where delays can incur in significant costs. Advances in thermochemical and spectroscopic techniques have enabled the screening of thousands of plants for different phenotypes, such as cell-wall cellulose, non-cellulosic polysaccharide, and lignin composition, lignin monomer composition, or monomeric sugar release. Some instrumental methods have been coupled with multivariate analysis, providing elegant chemometric predictive models enabling the accelerated identification of potential feedstocks. In addition to the use of high-throughput analytical methods for the characterization of feedstocks based on phenotypic metrics, rapid instrumental techniques have been developed for the real-time monitoring of diverse processes, such as the efficacy of a specific pretreatment strategy, or the formation of end products, such as biofuels and biomaterials. Real-time process monitoring techniques are needed for all stages of the feedstocks-to-biofuels conversion process in order to maximize efficiency and lower costs by monitoring and optimizing performance. These approaches allow researchers to adjust experimental conditions during, rather than at the conclusion, of a process, thereby decreasing overhead expenses. This Frontiers Research Topic explores options for the modification of biomass composition and the conversion of these feedstocks into to biofuels or biomaterials and the related innovations in methods for the analysis of the composition of plant biomass, and advances in assessing up- and downstream processes in real-time. Finally, a review of the computational models available for techno-economic modeling and lifecycle analysis will be presented.

Introduction to Biomass Energy Conversions
Author : Sergio Capareda
Publisher : CRC Press
Release Date : 2013-07-09
ISBN 10 : 1466513330
Pages : 645 pages
GET BOOK!

The potential that biomass energy has to supplement traditional fuels and reduce greenhouse gas emissions has put it front and center in the plan to replace fossil-based fuels with renewable fuels. While much has been written about biomass conversions, no single textbook contains all the information needed to teach a biomass conversion course—until now. Introduction to Biomass Energy Conversions presents a comprehensive review of biomass resources available for conversion into heat, power, and biofuels. The textbook covers biomass characterization and discusses facilities, equipment, and standards (e.g. ASTM or NREL) used for analysis. It examines the range of biomass resources available for conversion and presents traditional biomass conversion processes along with extensive biomass characterization data tables, illustrations, and graphical presentations of the various biomass energy conversion processes. The author also describes how to set up a laboratory for biomass energy conversion, and presents economics and sustainability issues. Loaded with real-world examples, the text includes numerous worked examples and problems in each chapter. No one knows what the price of oil will be next year or in future decades. It is governed by many factors other than supply and demand (politics, wars, etc.), however, whatever the future of energy is, bio-fuels will play an important role. This technical guide prepares students for managing bio-refineries, no matter what type of bio-fuel is produced. It also provides practicing engineers with a resource for starting a small bio-fuel business.

Biomass Volume Estimation and Valorization for Energy
Author : Jaya Shankar Tumuluru
Publisher : BoD – Books on Demand
Release Date : 2017-02-22
ISBN 10 : 9535129376
Pages : 516 pages
GET BOOK!

This book is the outcome of contributions by many experts in the field from different disciplines, various backgrounds, and diverse expertise. This book provides information on biomass volume calculation methods and biomass valorization for energy production. The chapters presented in this book include original research and review articles. I hope the research presented in this book will help to advance the use of biomass for bioenergy production and valorization. The key features of the book are: Providing information on biomass volume estimation using direct, nondestructive and remote sensing methods Biomass valorization for energy using thermochemical (gasification and pyrolysis) and biochemical (fermentation) conversion processes.

Recent Advances in Thermochemical Conversion of Biomass
Author : Ashok Pandey,Thallada Bhaskar,Michael Stöcker,Rajeev Sukumaran
Publisher : Elsevier
Release Date : 2015-01-28
ISBN 10 : 0444632905
Pages : 504 pages
GET BOOK!

This book provides general information and data on one of the most promising renewable energy sources: biomass for its thermochemical conversion. During the last few years, there has been increasing focus on developing the processes and technologies for the conversion of biomass to liquid and gaseous fuels and chemicals, in particular to develop low-cost technologies. This book provides date-based scientific information on the most advanced and innovative processing of biomass as well as the process development elements on thermochemical processing of biomass for the production of biofuels and bio-products on (biomass-based biorefinery). The conversion of biomass to biofuels and other value-added products on the principle biorefinery offers potential from technological perspectives as alternate energy. The book covers intensive R&D and technological developments done during the last few years in the area of renewable energy utilizing biomass as feedstock and will be highly beneficial for the researchers, scientists and engineers working in the area of biomass-biofuels- biorefinery. Provides the most advanced and innovative thermochemical conversion technology for biomass Provides information on large scales such as thermochemical biorefinery Useful for researchers intending to study scale up Serves as both a textbook for graduate students and a reference book for researchers Provides information on integration of process and technology on thermochemical conversion of biomass

Handbook on Characterization of Biomass, Biowaste and Related By-products
Author : Ange Nzihou
Publisher : Springer Nature
Release Date : 2020-02-17
ISBN 10 : 3030350207
Pages : 1387 pages
GET BOOK!

This book provides authoritative information, techniques and data necessary for the appropriate understanding of biomass and biowaste (understood as contaminated biomass) composition and behaviour while processed in various conditions and technologies. Numerous techniques for characterizing biomass, biowaste and by-product streams exist in literature. However, there lacks a reference book where these techniques are gathered in a single book, although such information is in increasingly high demand. This handbook provides a wealth of characterization methods, protocols, standards, databases and references relevant to various biomass, biowaste materials and by-products. It specifically addresses sampling and preconditioning methods, extraction techniques of elements and molecules, as well as biochemical, mechanical and thermal characterization methods. Furthermore, advanced and innovative methods under development are highlighted. The characterization will allow the analysis, identification and quantification of molecules and species including biomass feedstocks and related conversion products. The characterization will also provide insight into physical, mechanical and thermal properties of biomass and biowaste as well as the resulting by-products.

Technologies for Biochemical Conversion of Biomass
Author : Hongzhang Chen,Lan Wang
Publisher : Academic Press
Release Date : 2016-12-14
ISBN 10 : 0128025948
Pages : 284 pages
GET BOOK!

Technologies for Biochemical Conversion of Biomass introduces biomass biochemical conversion technology, including the pretreatment platform, enzyme platform, cell refining platform, sugar platform, fermentation platform, and post-treatment platform. Readers will find a systematic treatment, not only of the basics of biomass biochemical conversion and the introduction of each strategy, but also of the current advances of research in this area. Researchers will find the key problems in each technology platform for biomass biochemical conversion identified and solutions offered. This valuable reference book features new scientific research and the related industrial application of biomass biochemical conversion technology as the main content, and then systematically introduces the basic principles and applications of biomass biochemical conversion technology. Combines descriptions of these technologies to provide strategies and a platform for biochemical conversion in terms of basic knowledge, research advances, and key problems Summarizes models of biomass biochemical conversion for multiple products Presents products of biomass biochemical conversion from C1 to C10

Biomass as a Sustainable Energy Source for the Future
Author : Wiebren de Jong,J. Ruud van Ommen
Publisher : John Wiley & Sons
Release Date : 2014-11-03
ISBN 10 : 1118304918
Pages : 600 pages
GET BOOK!

Focusing on the conversion of biomass into gas or liquid fuels the book covers physical pre-treatment technologies, thermal, chemical and biochemical conversion technologies • Details the latest biomass characterization techniques • Explains the biochemical and thermochemical conversion processes • Discusses the development of integrated biorefineries, which are similar to petroleum refineries in concept, covering such topics as reactor configurations and downstream processing • Describes how to mitigate the environmental risks when using biomass as fuel • Includes many problems, small projects, sample calculations and industrial application examples

Issues in Energy Conversion, Transmission, and Systems: 2011 Edition
Author : N.A
Publisher : ScholarlyEditions
Release Date : 2012-01-09
ISBN 10 : 1464965323
Pages : 861 pages
GET BOOK!

Issues in Energy Conversion, Transmission, and Systems: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Energy Conversion, Transmission, and Systems. The editors have built Issues in Energy Conversion, Transmission, and Systems: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Energy Conversion, Transmission, and Systems in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Energy Conversion, Transmission, and Systems: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Direct Microbial Conversion of Biomass to Advanced Biofuels
Author : Michael E Himmel
Publisher : Elsevier
Release Date : 2015-05-19
ISBN 10 : 0444595899
Pages : 422 pages
GET BOOK!

'Direct Microbial Conversion of Biomass to Advanced Biofuels' is a stylized text that is rich in both the basic and applied sciences. It provides a higher level summary of the most important aspects of the topic, addressing critical problems solved by deep science. Expert users will find new, critical methods that can be applied to their work, detailed experimental plans, important outcomes given for illustrative problems, and conclusions drawn for specific studies that address broad based issues. A broad range of readers will find this to be a comprehensive, informational text on the subject matter, including experimentalists and even CEOs deciding on new business directions. Describes an important new field in biotechnology, the consolidated conversion of lignocellulosic feedstocks to advanced fuels Up-to-date views of promising technologies used in the production of advanced biofuels Presents the newest ideas, well-designed experiments, and outcomes Provides outstanding illustrations from NREL and contributing researchers Contains contributions from leaders in the field that provide numerous examples and insights into the most important aspects of the topic

Technologies for Converting Biomass to Useful Energy
Author : Erik Dahlquist
Publisher : CRC Press
Release Date : 2013-04-16
ISBN 10 : 0203120264
Pages : 520 pages
GET BOOK!

Officially, the use of biomass for energy meets only 10-13% of the total global energy demand of 140 000 TWh per year. Still, thirty years ago the official figure was zero, as only traded biomass was included. While the actual production of biomass is in the range of 270 000 TWh per year, most of this is not used for energy purposes, and mostly it

Biomass Gasification, Pyrolysis and Torrefaction
Author : Prabir Basu
Publisher : Academic Press
Release Date : 2013-07-18
ISBN 10 : 0123965438
Pages : 548 pages
GET BOOK!

Biomass is the most widely used non-fossil fuel in the world. Biomass resources show a considerable potential in the long-term given the increasing proliferation of dedicated energy crops for biofuels. The second edition of Biomass Gasification and Pyrolysis is enhanced with new topics, such as torrefaction and cofiring, making it a versatile resource that not only explains the basic principles of energy conversion systems, but also provides valuable insight into the design of biomass conversion systems. This book will allow professionals, such as engineers, scientists, and operating personnel of biomass gasification, pyrolysis or torrefaction plants, to gain a better comprehension of the basics of biomass conversion. The author provides many worked out design problems, step-by-step design procedures and real data on commercially operating systems. With a dedicated focus on the design, analysis, and operational aspects of biomass gasification, pyrolysis, and torrefaction, Biomass Gasification, Pyrolysis and Torrefaction, Second Edition offers comprehensive coverage of biomass in its gas, liquid, and solid states in a single easy-to-access source. Contains new and updated step-by-step process flow diagrams, design data and conversion charts, and numerical examples with solutions Includes chapters dedicated to evolving torrefaction technologies, practicing option of biomass cofiring, and biomass conversion economics Expanded coverage of syngas and other Fischer-Tropsch alternatives Spotlights advanced processes such as supercritical water gasification and torrefaction of biomass. Provides available research results in an easy-to-use design methodology

Biomass Preprocessing and Pretreatments for Production of Biofuels
Author : Jaya Shankar Tumuluru
Publisher : CRC Press
Release Date : 2018-07-26
ISBN 10 : 1498765483
Pages : 458 pages
GET BOOK!

Engineering the physical, chemical, and energy properties of lignocellulosic biomass is important to produce high-quality consistent feedstocks with reduced variability for biofuels production. The emphasis of this book will be the beneficial impacts that mechanical, chemical, and thermal preprocessing methods can have on lignocellulosic biomass quality attributes or specifications for solid and liquid biofuels and biopower production technologies. "Preprocessing" refers to treatments that can occur at a distance from conversion and result in an intermediate with added value, with improved conversion performance and efficiency. This book explores the effects of mechanical, chemical, and thermal preprocessing methods on lignocellulosic biomass physical properties and chemical composition and their suitability for biofuels production. For example, biomass mechanical preprocessing methods like size reduction (which impacts the particle size and distribution) and densification (density and size and shape) are important for feedstocks to meet the quality requirements for both biochemical and thermochemical conversion methods like enzymatic conversion, gasification, and pyrolysis process. Thermal preprocessing methods like drying, deep drying, torrefaction, steam explosion, hydrothermal carbonization, and hydrothermal liquefaction effect feedstock's proximate, ultimate and energy property, making biomass suitable for both solid and liquid fuel production. Chemical preprocessing which includes washing, leaching, acid, alkali, and ammonia fiber explosion that can enable biochemical composition, such as modification of lignin and hemicellulose, and impacts the enzymatic conversion application for liquid fuels production. This book also explores the integration of these preprocessing technologies to achieve desired lignocellulosic biomass quality attributes for biofuels production.

Lignocellulosic Biomass to Liquid Biofuels
Author : Abu Yousuf,Filomena Sannino,Domenico Pirozzi
Publisher : Academic Press
Release Date : 2019-11-20
ISBN 10 : 0128162805
Pages : 358 pages
GET BOOK!

Lignocellulosic Biomass to Liquid Biofuels explores the existing technologies and most recent developments for the production of second generation liquid biofuels, providing an introduction to lignocellulosic biomass and the processes for its conversion into biofuels. The book demonstrates biorefinery concepts compared with petro refinery, as well as the challenges of second generation biofuels processing. In addition to current pre-treatment techniques and their technical, environmental and economic implications, chapters included also further examine the particularities of conversion processes for bioethanol, biobutanol and biodiesel through chemical, biochemical and combined approaches. Finally, the book looks into concepts and tools for techno-economic and environmental analysis, which include supply chain assessment, by-products, zero-waste techniques and process evaluation and optimization. Lignocellulosic Biomass to Liquid Biofuels is particularly useful for researchers in the field of liquid biofuels seeking alternative chemical and biochemical pathways or those interested advanced methods to calculate maximum yield for each process and methods to simulate the implications and costs of scaling up. Furthermore, with the introduction provided by this volume, researchers and graduate students entering the field will be able to quickly get up to speed and identify knowledge gaps in existing and upcoming technology the book’s comprehensive overview. Examines the state-of-the-art technology for liquid biofuels production from lignocellulosic biomass Provides a comprehensive overview of the existing chemical and biochemical processes for second generation biofuel conversion Presents tools for the techno-economic and environmental analysis of technologies, as well as for the scale-up simulation of conversion processes

Biomass Conversion
Author : Michael E. Himmel
Publisher : Humana Press
Release Date : 2012-07-28
ISBN 10 : 9781617799556
Pages : 275 pages
GET BOOK!

Biomass conversion research is a combination of basic science, applied science, and engineering testing and analysis. Conversion science includes the initial treatment (called pre-treatment) of the feedstock to render it more amenable to enzyme action, enzymatic saccharification, and finally product formation by microbiological or chemical processes. In Biomass Conversion: Methods and Protocols, expert researchers in the field detail methods which are now commonly used to study biomass conversion. These methods include Biomass Feedstocks and Cellulose, Plant Cell Wall Degrading Enzymes and Microorganisms, and Lignins and Hemicelluloses. Written in the highly successful Methods in Molecular BiologyTM series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting informed, reproducible results in the laboratory.