advanced power generation systems

Download Advanced Power Generation Systems ebooks in PDF, epub, tuebl, textbook from Skinvaders.Com. Read online Advanced Power Generation Systems books on any device easily. We cannot guarantee that Advanced Power Generation Systems book is available. Click download or Read Online button to get book, you can choose FREE Trial service. READ as many books as you like (Personal use).

Advanced Power Generation Systems
Author : Ibrahim Dincer,Calin Zamfirescu
Publisher : Academic Press
Release Date : 2014-07-15
ISBN 10 : 0123838614
Pages : 656 pages
GET BOOK!

Advanced Power Generation Systems examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within both hybrid and dedicated systems. The detailed energy and exergy analysis of each type of system provided by globally recognized author Dr. Ibrahim Dincer will inform effective and efficient design choices, while emphasizing the pivotal role of new methodologies and models for performance assessment of existing systems. This unique resource gathers information from thermodynamics, fluid mechanics, heat transfer, and energy system design to provide a single-source guide to solving practical power engineering problems. The only complete source of info on the whole array of multiple output thermodynamic cycles, covering all the design options for environmentally-conscious combined production of electric power, heat, and refrigeration Offers crucial instruction on realizing more efficiency in traditional power generation systems, and on implementing renewable technologies, including solar, hydrogen, fuel cells, and biomass Each cycle description clarified through schematic diagrams, and linked to sustainable development scenarios through detailed energy, exergy, and efficiency analyses Case studies and examples demonstrate how novel systems and performance assessment methods function in practice

Advanced Power Generation Systems for the 21st Century
Author : N.A
Publisher : N.A
Release Date : 1999
ISBN 10 :
Pages : 237 pages
GET BOOK!

The purpose of this report is to document the results of a study designed to enhance the performance of future military generator sets (gen-sets) in the medium power range. The study includes a market survey of the state of the art in several key component areas and recommendations comprising a design philosophy for future military gen-sets. The market survey revealed that the commercial market is in a state of flux, but it is currently or will soon be capable of providing the technologies recommended here in a cost-effective manner. The recommendations, if implemented, should result in future power generation systems that are much more functional than today's gen-sets. The number of differing units necessary (both family sizes and frequency modes) to cover the medium power range would be decreased significantly, while the weight and volume of each unit would decrease, improving the transportability of the power source. Improved fuel economy and overall performance would result from more effective utilization of the prime mover in the generator. The units would allow for more flexibility and control, improved reliability, and more effective power management in the field.

Electric Power Systems
Author : João P. S. Catalão
Publisher : CRC Press
Release Date : 2017-12-19
ISBN 10 : 1439893969
Pages : 462 pages
GET BOOK!

Electric Power Systems: Advanced Forecasting Techniques and Optimal Generation Scheduling helps readers develop their skills in modeling, simulating, and optimizing electric power systems. Carefully balancing theory and practice, it presents novel, cutting-edge developments in forecasting and scheduling. The focus is on understanding and solving pivotal problems in the management of electric power generation systems. Methods for Coping with Uncertainty and Risk in Electric Power Generation Outlining real-world problems, the book begins with an overview of electric power generation systems. Since the ability to cope with uncertainty and risk is crucial for power generating companies, the second part of the book examines the latest methods and models for self-scheduling, load forecasting, short-term electricity price forecasting, and wind power forecasting. Toward Optimal Coordination between Hydro, Thermal, and Wind Power Using case studies, the third part of the book investigates how to achieve the most favorable use of available energy sources. Chapters in this section discuss price-based scheduling for generating companies, optimal scheduling of a hydro producer, hydro-thermal coordination, unit commitment with wind generators, and optimal optimization of multigeneration systems. Written in a pedagogical style that will appeal to graduate students, the book also expands on research results that are useful for engineers and researchers. It presents the latest techniques in increasingly important areas of power system operations and planning.

Low NOx Combustion Concepts for Advanced Power Generation Systems Firing Low-BTU Gas
Author : Industrial Environmental Research Laboratory (Research Triangle Park, N.C.),T. J. Tyson
Publisher : N.A
Release Date : 1977
ISBN 10 :
Pages : 231 pages
GET BOOK!

Power Generation Technologies
Author : Paul Breeze
Publisher : Elsevier
Release Date : 2005-02-04
ISBN 10 : 9780080480107
Pages : 288 pages
GET BOOK!

This book makes intelligible the wide range of electricity generating technologies available today, as well as some closely allied technologies such as energy storage. The book opens by setting the many power generation technologies in the context of global energy consumption, the development of the electricity generation industry and the economics involved in this sector. A series of chapters are each devoted to assessing the environmental and economic impact of a single technology, including conventional technologies, nuclear and renewable (such as solar, wind and hydropower). The technologies are presented in an easily digestible form. Different power generation technologies have different greenhouse gas emissions and the link between greenhouse gases and global warming is a highly topical environmental and political issue. With developed nations worldwide looking to reduce their emissions of carbon dioxide, it is becoming increasingly important to explore the effectiveness of a mix of energy generation technologies. Power Generation Technologies gives a clear, unbiased review and comparison of the different types of power generation technologies available. In the light of the Kyoto protocol and OSPAR updates, Power Generation Technologies will provide an invaluable reference text for power generation planners, facility managers, consultants, policy makers and economists, as well as students and lecturers of related Engineering courses. · Provides a unique comparison of a wide range of power generation technologies - conventional, nuclear and renewable · Describes the workings and environmental impact of each technology · Evaluates the economic viability of each different power generation system

Gas-Turbine Power Generation
Author : Paul Breeze
Publisher : Academic Press
Release Date : 2016-02-24
ISBN 10 : 0128040556
Pages : 104 pages
GET BOOK!

Gas-Turbine Power Generation is a concise, up-to-date, and readable guide providing an introduction to gas turbine power generation technology. It includes detailed descriptions of gas fired generation systems, demystifies the functions of gas fired technology, and explores the economic and environmental risk factors Engineers, managers, policymakers and those involved in planning and delivering energy resources will find this reference a valuable guide that will help them establish a reliable power supply as they also account for both social and economic objectives. Provides a concise, up-to-date, and readable guide on gas turbine power generation technology Focuses on the evolution of gas-fired power generation using gas turbines Evaluates the economic and environmental viability of the system with concise diagrams and accessible explanations

Combined Cycle Systems for Near-Zero Emission Power Generation
Author : Ashok D Rao
Publisher : Elsevier
Release Date : 2012-04-12
ISBN 10 : 0857096184
Pages : 360 pages
GET BOOK!

Combined cycle power plants are one of the most promising ways of improving fossil-fuel and biomass energy production. The combination of a gas and steam turbine working in tandem to produce power makes this type of plant highly efficient and allows for CO2 capture and sequestration before combustion. This book provides a comprehensive review of the design, engineering and operational issues of a range of advanced combined cycle plants. After introductory chapters on basic combined cycle power plant and advanced gas turbine design, the book reviews the main types of combined cycle system. Chapters discuss the technology, efficiency and emissions performance of natural gas-fired combined cycle (NGCC) and integrated gasification combined cycle (IGCC) as well as novel humid air cycle, oxy-combustion turbine cycle systems. The book also reviews pressurised fluidized bed combustion (PFBC), externally fired combined cycle (EFCC), hybrid fuel cell turbine (FC/GT), combined cycle and integrated solar combined cycle (ISCC) systems. The final chapter reviews techno-economic analysis of combined cycle systems. With its distinguished editor and international team of contributors, Combined cycle systems for near-zero emission power generation is a standard reference for both industry practitioners and academic researchers seeking to improve the efficiency and environmental impact of power plants. Provides a comprehensive review of the design, engineering and operational issues of a range of advanced combined cycle plants Introduces basic combined cycle power plant and advanced gas turbine design and reviews the main types of combined cycle systems Discusses the technology, efficiency and emissions performance of natural gas-fired combined cycle (NGCC) systems and integrated gasification combined cycle (IGCC) systems, as well as novel humid air cycle systems and oxy-combustion turbine cycle systems

Protective Relaying for Power Generation Systems
Author : Donald Reimert
Publisher : CRC Press
Release Date : 2017-12-19
ISBN 10 : 1351836706
Pages : 592 pages
GET BOOK!

Power outages have considerable social and economic impacts, and effective protection schemes are crucial to avoiding them. While most textbooks focus on the transmission and distribution aspects of protective relays, Protective Relaying for Power Generation Systems is the first to focus on protection of motors and generators from a power generation perspective. It also includes workbook constructions that allow students to perform protection-related calculations in Mathcad® and Excel®. This text provides both a general overview and in-depth discussion of each topic, making it easy to tailor the material to students' needs. It also covers topics not found in other texts on the subject, including detailed time decrement generator fault calculations and minimum excitation limit. The author clearly explains the potential for damage and damaging mechanisms related to each protection function and includes thorough derivations of complex system interactions. Such derivations underlie the various rule-of-thumb setting criteria, provide insight into why the rules-of-thumb work and when they are not appropriate, and are useful for post-incident analysis. The book's flexible approach combines theoretical discussions with example settings that offer quick how-to information. Protective Relaying for Power Generation Systems integrates fundamental knowledge with practical tools to ensure students have a thorough understanding of protection schemes and issues that arise during or after abnormal operation.

Low NOx Combustion Concepts for Advanced Power Generation Systems Firing Low-BTU Gas
Author : Industrial Environmental Research Laboratory (Research Triangle Park, N.C.),T. J. Tyson
Publisher : N.A
Release Date : 1977
ISBN 10 :
Pages : 231 pages
GET BOOK!

Electricity from Renewable Resources
Author : National Research Council,National Academy of Engineering,National Academy of Sciences,America's Energy Future Panel on Electricity from Renewable Resources
Publisher : National Academies Press
Release Date : 2010-04-05
ISBN 10 : 030913708X
Pages : 386 pages
GET BOOK!

A component in the America's Energy Future study, Electricity from Renewable Resources examines the technical potential for electric power generation with alternative sources such as wind, solar-photovoltaic, geothermal, solar-thermal, hydroelectric, and other renewable sources. The book focuses on those renewable sources that show the most promise for initial commercial deployment within 10 years and will lead to a substantial impact on the U.S. energy system. A quantitative characterization of technologies, this book lays out expectations of costs, performance, and impacts, as well as barriers and research and development needs. In addition to a principal focus on renewable energy technologies for power generation, the book addresses the challenges of incorporating such technologies into the power grid, as well as potential improvements in the national electricity grid that could enable better and more extensive utilization of wind, solar-thermal, solar photovoltaics, and other renewable technologies.

Wind Energy Systems for Electric Power Generation
Author : Manfred Stiebler
Publisher : Springer Science & Business Media
Release Date : 2008-08-19
ISBN 10 : 3540687653
Pages : 193 pages
GET BOOK!

Among renewable sources wind power systems have developed to prominent s- pliers of electrical energy. Since the 1980s they have seen an exponential increase, both in unit power ratings and overall capacity. While most of the systems are found on dry land, preferably in coastal regions, off-shore wind parks are expected to add signi?cantly to wind energy conversion in the future. The theory of modern wind turbines has not been established before the 20th century. Currently wind turbines with three blades and horizontal shaft prevail. The drivenelectricgeneratorsareoftheasynchronousorsynchronoustype,withorwi- out interposed gearbox. Modern systems are designed for variable speed operation which make power electronic devices play an important part in wind energy conv- sion. Manufacturing has reached the state of a high-tech industry. Countries prominent for the amount of installed wind turbine systems feeding into the grid are in Europe Denmark, Germany and Spain. Outside Europe it is the United States of America and India who stand out with large rates of increase. The market and the degree of contribution to the energy consumption in a country has been strongly in?uenced by National support schemes, such as guaranteed feed-in tariffs or tax credits. Due to the personal background of the author, the view is mainly directed on Europe, and many examples are taken from the German scene. However, the sit- tion in other continents, especially North America and Asia is also considered.

Advanced Control of Doubly Fed Induction Generator for Wind Power Systems
Author : Dehong Xu,Frede Blaabjerg,Wenjie Chen,Nan Zhu
Publisher : John Wiley & Sons
Release Date : 2018-06-28
ISBN 10 : 1119172071
Pages : 496 pages
GET BOOK!

Covers the fundamental concepts and advanced modelling techniques of Doubly Fed Induction Generators accompanied by analyses and simulation results Filled with illustrations, problems, models, analyses, case studies, selected simulation and experimental results, Advanced Control of Doubly Fed Induction Generator for Wind Power Systems provides the basic concepts for modelling and controlling of Doubly Fed Induction Generator (DFIG) wind power systems and their power converters. It explores both the challenges and concerns of DFIG under a non-ideal grid and introduces the control strategies and effective operations performance options of DFIG under a non-ideal grid. Other topics of this book include thermal analysis of DFIG wind power converters under grid faults; implications of the DFIG test bench; advanced control of DFIG under harmonic distorted grid voltage, including multiple-loop and resonant control; modeling of DFIG and GSC under unbalanced grid voltage; the LFRT of DFIG, including the recurring faults ride through of DFIG; and more. In addition, this resource: Explores the challenges and concerns of Doubly Fed Induction Generators (DFIG) under non-ideal grid Discusses basic concepts of DFIG wind power system and vector control schemes of DFIG Introduces control strategies under a non-ideal grid Includes case studies and simulation and experimental results Advanced Control of Doubly Fed Induction Generator for Wind Power Systems is an ideal book for graduate students studying renewable energy and power electronics as well as for research and development engineers working with wind power converters.